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Abstract

Recommender systems (RS) support users in filtering the vast and increasing number
of documents on the Web. Text-based methods for recommending documents are
well-established among websites. In particular, the MoreLikeThis (MLT') component
from the Apache Lucence framework is a common basis for text-based RS. Wikipedia,
for instance, is currently using a MLT-based component to recommend articles to
its users. A recent study shows that the link-based Co-Citation Proximity Analysis
(CPA) is a promising alternative to MLT. The study compares MLT and CPA for
the task of recommending Wikipedia articles, even if CPA was originally developed
to find related scientific papers based on citations.

With this thesis, we continue the research on MLT- and CPA-based RS for Wiki-
pedia, since the previous study could not give a final statement on which method is
superior. To answer this question, we develop CPA from a research prototype into a
large-scale RS, which can be deployed into the production environment of Wikipe-
dia. Such deployment gives the opportunity of a large-scale online evaluation with
millions of users of the Wikipedia Android app. We demonstrate the validity of this
evaluation approach with a lab study. The feedback from 33 participants shows no
statistical significant difference between CPA and MLT. Both RS perform similarly
well with respect to the click-oriented evaluation. The outcome of the user study
corresponds to the outcome of a manual analysis of sample recommendation sets,
which also does not reveal any significant difference of CPA and MLT. Thus, we con-
sider the online evaluation as representative despite the low number of participants.
A real-world study with Wikipedia’s production system could not be conducted as
part of this thesis.

Prior to the user-centric evaluation, we implement and evaluate conceptional
improvements of CPA. The introduction of an Inverse Link Frequency factor increases
the click rate, precision and coverage of CPA’s recommendations. Furthermore, the
definition of co-link proximity as number of words between links outperforms other
proximity definitions. We tested the improvements in an offline evaluation based on
quasi-gold standards from Wikipedia’s “See also” links and click streams.

The thesis shows that a CPA-based RS is suitable for a large-scale deployment in
a production environment. Moreover, our findings confirm CPA’s promising results
from the preliminary study. CPA’s performance is at least equivalent to MLT’s,
whereby in future work the superiority of one method needs to be determined with
a real-world online evaluation.
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Zusammenfassung

Empfehlungsdienste unterstiitzen Benutzer beim Bewéltigen der im Web allgegen-
wartigen Informationsflut. Textbasierte Verfahren zahlen dabei zu den géngigsten
Empfehlungsdiensten. Insbesondere die MoreLikeThis (MLT) Komponente aus dem
Apache Lucene Framework ist ein bei vielen Webdiensten beliebter Empfehlungsdi-
enst. Beispielsweise benutzt Wikipedia MLT fiir Artikelempfehlungen. Eine aktuelle
Studie zeigt, dass das linkbasierte Verfahren Co-Citation Proximity Analysis (CPA),
welches urspriinglich fiir das zitationsbasierte Empfehlen von Wissenschaftsliteratur
entwickelt wurde, eine vielversprechende Alternative zu MLT sein kann. Diese Studie
hat CPA und MLT an Hand von Wikipedia mit einer Offline-Auswertung verglichen.

Die hier vorliegende Arbeit setzt die Forschung tiber CPA und MLT als Wikipedia-
Empfehlungsdienst fort, denn die vorherige Studie konnte nicht feststellen, welcher
Empfehlungsdienst besser ist. Um diese Frage zu beantworten, wird CPA von
einem Prototypen zu einem in dem Produktivsystem der Wikipedia einsetzbaren
Empfehlungsdienst entwickelt. Ein solcher Empfehlungsdienst ermdoglicht die grofian-
gelegten Online-Auswertung mit der Wikipedia Android-App. Das entwickelte Sys-
tem wird im Rahmen einer Laborstudie mit 33 Teilnehmern evaluiert. Die dabei
ermittelten Ergebnisse zeigen, dass beide Verfahren &hnlich gute Ergebnisse liefern.
Hinsichtlich der Ergebnisgiite konnte kein signifikanter Unterschied zwischen den
Verfahren CPA und MLT festgestellt werden. Eine Studie mit dem Produktivsystem
der Wikipedia konnte im Rahmen dieser Arbeit nicht durchgefiihrt werden.

Vor der Durchfiihrung der Laborstudie wurden konzeptionelle Verbesserung von
CPA entwickelt und quantitativ mit “See also”™Links und Clickstreams ausgewertet.
Ein “Inverse Link Frequency’-Faktor verbessert die Klickraten, Genauigkeit und
Empfehlungsvielfalt von CPA. Des Weiteren konnte gezeigt werden, dass die Anzahl
von Wortern zwischen zwei Links am Besten die “Co-Link Proximity” bestimmt.

Zusammengefasst zeigt diese Forschungsarbeit, dass CPA fiir den grofsangelegten
Einsatz als Empfehlungsdienst in einem Produktivsystem geeignet ist. Aufserdem
konnten die Ergebnisse der vorherigen Studie bestétigt werden. CPA erzielt min-
destens mit MLT vergleichbare Ergebnisse, wobei eine abschliefsende Beurteilung
mit einer groffangelegten Online-Auswertung erfolgen sollte.
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Chapter 1

Introduction

In this chapter, we explain the motivation behind this thesis and introduce our
research goals and how we plan to achieve them.

1.1 Motivation

Recommender systems are crucial filtering and discovery tools to manage the vast
and continuously increasing volume of items available in digital libraries and on
the Web. The research community usually distinguished two types of recommender
systems: Content-based and collaborative filtering. Collaborative filtering requires
user data and is often used by Web services like social networks that are able to
collect and analyze large amount of user behavior information. However, most rec-
ommender system (approximately 55%) employ content-based document features
and corresponding similarity measures to provide recommendations [6].

Especially in academia, recommender systems are a centerpiece among research
support tools. Keeping track of the latest research in one’s field by identifying the
most relevant papers is essential for research progress. The exponentially increasing
number of published articles and the increased speed of article availability, makes
thorough literature research even more important, but at the same time more tedious
and time consuming for researchers. In academic recommender systems, citation-
based features and document similarity measures have proven valuable [30, 44], while
in the Web-context they are less common.

Wikipedia is an other example for a large and rapidly growing digital library.
As of April 2016, all language-specific versions of the Wikipedia combined contain
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approximately 39 million articles, of which five million are in Englishﬂ. The English
Wikipedia grew by approximately 1,000 articles per day in 2015. All Wikimedia
projects received on average 18 billion page views (crawlers excluded) per month
in 20157 Despite Wikipedia’s size, popularity and rapid growth, little research has
addressed the issue of improving information search in Wikipedia through automated
generation of article recommendations. At the same time, Wikipedia neglects the
collection of user behavior data due to privacy concerns and, therefore, collaborative
filtering is ineligible. Hence, we aim to further investigate the effectiveness of content-
based Wikipedia recommender systems. In particular, the comparison of text- and
link-based concepts is the matter of this thesis.

1.2 Objective

In an initial study [39], Co-Citation Proximity Analysis (CPA) [I] has shown promis-
ing results for the task of recommending related Wikipedia articles. With this thesis
we continue the research on this topic.

The initial study compared CPA with classical Co-Citation Analysis (CoCit) and
MoreLikeThis (MLT) from the Apache Lucence frameworkf] MLT is a text-based
approach and relies on the concept of Term Frequency - Inverse Document Frequency
(TF-IDF) [36]. While being widely used by other web services, MLT is also currently
in use by Wikipedia itself. In [39], the three recommender systems were compared
in an offline evaluation, which did not allow a final statement on the superiority
of one method. Primary, the study was only data-centric, i.e. no real users were
involved. With this thesis we aim to overcome this drawback by performing an
online evaluation with real user feedback.

To be able to perform an online evaluation, we need to develop and deploy a test
framework into the Wikipedia infrastructure that is capable of distributing article
recommendations and measuring how user interact with the recommendations. The
test framework should be primarily used to compare MLT and CPA in a real-world
scenario. The recommendations generated by CPA should be optimized for the
integration into the Wikipedia Android appf, where implicit user feedback, i.e. clicks
on the recommendations, can be collected. The online evaluation can be conducted

"http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
2http://reportcard.wmflabs.org

3http://lucene.apache.org/
‘https://play.google.com/store/apps/details?id=org.wikipedia
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in either a large-scale experiment, where the recommendations will be exposed to the
general Wikipedia audience, or in a small-scale lab study, where users are explicitly
ask to participate in the experiment.

Prior to the online evaluation, we test possible improvements of CPA, which the
preliminary study [39] proposed as future work. The effectiveness of the improve-
ments are evaluated in an offline experiment. Moreover, the thesis investigates how
the technical implementation needs to be adjusted to deploy CPA in Wikipedia’s
production environment. A productive system such as the Wikipedia infrastructure
presents strict requirements that need to be met by the recommender system. The
in the previous study developed research prototype of the CPA recommender system
does not meet these requirements.

All in all, the thesis boils down to the following research goals:

1. Which approach, link-based Co-Citation Proximity Analysis (CPA) or text-
based MoreLikeThis (MLT), performs better in an online evaluation for rec-
ommending related Wikipedia articles?

2. Given the simplicity of the current CPA approach, how can additional modifi-
cations improve CPA’s recommendation performance?

3. Can CPA be implemented in such a way that it can be deployed in a large-scale
productive environment like the Wikipedia infrastructure?

The approach to answer to the research questions, the corresponding work and
the findings itself are presented in the following chapters.

1.3 Structure of the Thesis

This thesis is structured as follows: In Chapter [2| we discuss essential background
information related to the thesis. We introduce Wikipedia in the context of this
thesis, the technologies, like Apache Flink or Elasticsearch, that were used in this
research, and the algorithms behind the evaluated recommender systems. Chapter
gives an overview on similar recommender system studies and other related literature.
In Chapter [4] we present the details of the technical implementation. In particular,
we describe the system architecture and its components. Evaluation results are
presented in Chapter [f] Chapter [6] summarizes the findings, gives conclusion to the
research objectives and proposes areas of future work.



Chapter 2

Background

In this chapter, we describe at first the research problem. Then, we introduce tech-
nologies, data and concepts that we use throughout this work and we motivate why
they were used.

2.1 Problem Description

With respect the research objectives, we describe in the following the problem that
we solve with this work, focusing on three main aspects: Relevance judgment of
recommendations, the evaluation method and Wikipedia’s implementations require-
ments.

2.1.1 Relevance Judgment

The general goal of recommender systems is to recommend items that are relevant
to users. In our case we want to recommend Wikipedia articles that are relevant in
context of the currently read article to users of the Wikipedia Android app. However,
determining relevance is a complex challenge due to its nature. Relevance consists
of two main components [22]:

e Commonly objective topical relevance

e Purely subjective user relevance

Domain experts can judge the topical relevance of a document. On contrary,
user relevance highly depends on the user’s information need. In the latter case,

4
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relevance of items can differ from user to user. As a result the automatic relevance
judgment is challenging. Moreover, recommender systems need to balance both
relevance components. Collaborative filtering systems usually individualize recom-
mendations. However, current content-based recommender systems identify topically
relevant documents by using document similarity as approximation of relevance [23].
Here, the idea is that documents, which are similar, are more likely to cover a related
topic. Yet, pure similarity neglects objective and subjective relevance of a document.
This leads to the problem of relevance is not being reflected in content-based recom-
mendations.

This problem also applies on the Wikipedia use case. Therefore, we focus on
objective topical relevance when recommending articles, since only the article content
and no user data is taken into account and, therefore, no subjective user relevance
can be expected.

2.1.2 Evaluation Method

Recommender system researchers face one major difficulty: The performance evalua-
tion of recommender systems, i.e. researchers need to prove the advantage of their
approach. Reproducibility and significance are thereby issues. Even if there are
various evaluation metrics available to measure the recommendation performance,
the evaluation methodology is the crucial part. Throughout the literature, there are
three types of evaluation methods widely established [I8], [41]: (1) Offline evaluations,
where recommender systems are compared without user interaction and based on an
existing data set. (2) Online evaluations, which involve the collection of novel user
signals in an recommender system application. (3) User-studies, where a group of
subjects test the recommender system in an lab or real-world scenario.

Offline Evaluation

Offline evaluations make use of existing data and can be conducted without any real
user interaction. For this reason offline evaluations are also called data- or system-
centric evaluations, whereas online and user-studies are called user-centric. A com-
mon approach is to a take predefined recommendation set and the corresponding user
feedback, remove user feedback from the set and measure how well a recommender
system can predict or recover the missing feedback. The user feedback can be an
explicit rating or another action like a view or a sale. In the latter case it is not
clear if a user action implies that the user likes the recommendation. The user, for
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instance, can buy a product and afterwards rate it negatively or cancel the order.
In offline evaluations the performance is usually measured with an accuracy metrics,
e.g. precision and recall. Due to the missing user involvement, offline evaluations
usually require the least effort of the three types. Thus, an offline evaluation should
be used to test a recommender system in an early prototyping-stage. However, the
outcome of an offline evaluation strongly depends on the underlying data set, which
might include bias. An offline evaluation alone cannot provide enough evidence to
prove that one system outperforms the other. Hence, it is recommended to always
combine an offline evaluation with at least one of the other two types. Offline eval-
uations are also often used in recommendation challenges, e.g. The Million Song
Dataset Challenge [29] or Netflix Price [9], as different implementations by different
authors can be compared by this method.

User Study

In the user study setting, the evaluation involves user interaction, i.e. real user pro-
vides feedback on the recommendations. In a qualitative study explicit feedback
is provided, typically with a questionnaire or interview. In this case the subject is
aware of him or her taking part in the study. One problem is that it is question-
able whether the results can be transferred to the true user satisfaction, since the
group of subjects can be skewed: A user might act different if he or she knows about
the experiment. Only users with the need of sharing their opinion participate in a
questionnaire. A significant large number of well-chosen subjects can overcome this
problem. Yet, conducting a user study at this scale is often unfeasible due to limited
resources. Also, finding participants for a niche domains can be tedious. Despite
this challenge, user studies can provide quality and in-depth feedback on the per-
formance of recommender system, that cannot be measured by any other evaluation
method. Unifying evaluation frameworks like ResQue [33] and LensKit [14] exist to
standardize user studies.

Online Evaluation

The barrier for conducting an online evaluations is significantly higher compared to
the other evaluation methods. That is because an online evaluation requires that the
researchers own or have access to a deployed recommender system. The application,
where the recommender system is deployed, e.g. a website, should as well have a large
enough number of active users and should allow to track how its users are interacting
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with the recommender system. With such a system implicit user feedback can be
collected, e.g. by counting the clicks on specific recommendations. An explicit user
action is not required for the evaluation. Therefore, an online evaluation allows to
gather large amount of user feedback. Making the outcome of such a study more
meaningful and less biased, as long as the researchers ensure that the feedback is not
affect by other factors, e.g. seasonal trends or other modification of the system.

Wikipedia offers an elegant solution to the evaluation method problem. For an
offline evaluation Wikipedia provides quasi-gold standards that can be used as data
set to test recommender systems. Finding participants for a Wikipedia user-study is
also comparably easy, since most Internet users are already familiar with Wikipedia.
But most interestingly, Wikipedia’s open source policy also gives the opportunity
to research to contribute their research work and to potentially evaluate it with the
Wikipedia community:.

2.1.3 Implementation Requirements

Research prototypes of recommender systems usually neglect runtime and stability
issues. This holds true for the in [39] developed CPA recommender system. With
respect to the goal of conducting an online evaluation and deploying the recommender
system to Wikipedia’s production infrastructure, the CPA prototype needs to be
adjusted to fit the requirement of such deployment.

First of all, the CPA recommender system needs to be integrable into Wikipe-
dia’s infrastructure. Put differently, we must rely on all existing technologies and
applications and introduce as little as possible new to Wikipedia. Otherwise Wikipe-
dia’s developer would not accept a novel feature because of incalculable maintenance
overhead. This is a restriction at most open source software projects.

Furthermore, resource management is crucial for a non-profit organization such
as Wikipedia. Due to resource limitation, the recommender system needs to be
optimized with respect to its computing time. At the same time, the recommender
system needs to be capable of generating recommendations for a Wikipedia languages
in frequent time intervals, e.g. once a week, to reflect to content changes.
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2.2 Wikipedia

From the research perspective Wikipedia is interesting as test collection because of
its diversity and size (Section . In the following, we give some background in-
formation on the two tested Wikipedia languages, German and simple English, the
corresponding data sets and quasi-gold standards that we extract from Wikipedia.
To clarify the terminology, we distinguish the Wikipedia website (wikipedia.org and
its language versions), the Wikipedia Android app, the Wikipedia articles (test col-
lection or corpus) and the Wikimedia Foundation (WMF'), which is the organization
that runs all services related to the Wikipedia website. With Wikipedia languages,
e.g. German Wikipedia, we refer to the articles available on the German version
of the Wikipedia website (de.wikipedia.org). When using the terms Wikipedia in-
frastructure or production environment, we refer to the technical infrastructure, e.g.
Web and database servers, that hosts the Wikipedia website.

2.2.1 Wikipedia as Test Collection

In the preliminary study [39], we investigated the English Wikipedia. Yet, for this
thesis we want to extend the work on other languages to test whether the language
or the corpus size affects the performance. For this reason and because of limited
computing resources, which prevent the use in our user study, we do not consider
the English Wikipedia in this thesis. Instead, we investigate German and simple
English[] Wikipedias as research subject.

Generally a link-based recommender system as CPA should be language inde-
pendent in contrast to text-based approaches. Following this idea you would assume
that the recommendation algorithm performs similar well on all Wikipedia versions.
However, the link usage within the corpus strongly affects the performance from CPA
as shown in the previous study. Hence, the different size of the German and simple
English test collection is more important than the different language of the words.
Both test collections are smaller than the English Wikipedia, which is the biggest
Wikipedia language with five million articles. With 2,015,558 million articles Ger-
man is the second biggest Wikipedia language, whereas simple English is relatively
small with 122,076 articles. All numbers are based on the Wikipedia XML dump

!Simple English usually refers to a simplified form of the English language, such as: Basic
English, a controlled language, created by Charles Kay Ogden, which only contains a small number
of words.
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Figure 2.1: Distribution of number of words per Wikipedia article (log scale). Very
long articles are rare. German articles are generally longer than simple English
articles.

from January 2017

Many articles of the simple English Wikipedia are shorter than the same articles
in the English Wikipedia [43]. On average simple English articles have 337 words,
while the longest article has 39,452 words. German articles are generally longer (avg.
length 657 words, max. 134,621 words). Most articles are short, while only a few
very long article exist (Figure . 94% articles in the simple English Wikipedia
have less than 1,000 words (85% in German).

Looking at in-links per Wikipedia article (Figure , the distribution is even
more skewed. 95% articles in the simple English Wikipedia have less than 50 in-links
(93% in German). While simple English articles receive on average 12.2 in-links and
at maximum 12,657 in-links (German: avg. 23.6 in-links, max. 121,340 in-links).

Consequently, both recommender systems have the challenge to deal with articles
that have very different properties, whereby the word count should have a stronger

’https://dumps.wikimedia.org/
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Figure 2.2: Distribution of number of in-links per Wikipedia article (log scale). Most
articles have none or only a few in-links.

effect on MLT and the in-link count on CPA. Regarding the languages, we expect
the recommender system to perform better on German, since it generally has article
with more words and in-links.

2.2.2 Wikipedia as Quasi-gold Standard

Offline evaluations have the advantage that they do not require user interaction and
are therefore often more easy to conduct. Instead the difficulty of offline evaluations
lies in the dataset that is used for the evaluation. Usually such a data set consists
of user-feedback that was manually generated by experts or collected from a live
system. In the context of recommender system the dataset may contain user ratings
for recommended items which present a gold standard. However, Wikipedia does
not provide such gold standard dataset nor we have the resources to manually create
it. But we can use other Wikipedia data to derive quasi-gold standards. Before
introducing our quasi-gold standards, we briefly clarify terminology of gold standard
and quasi-gold standard.

10
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Terminology

The common approach of evaluating information retrieval systems is to compare the
retrieved documents to a reference model to classify a document as either relevant
or irrelevant. A gold standard or ground truth is the perfect reference model that
provides the best possible responses to any tested query. True positives are all re-
trieved documents that are part of the gold standard and therefore relevant. All
other retrieved documents are false positives, i.e. irrelevant. For many applications
a gold standard remains a theoretical concept, which is impossible to achieve in real
world. Even a traditional user study, in which domain experts are asked to identify
relevant documents, cannot completely eliminate misjudgments especially false neg-
ative errors as experts may miss relevant documents. Therefore, we introduce the
term quasi-gold standard as approximation of a perfect reference model. A quasi-
gold standard provides relevance judgments of comparable quality as the relevance
judgments of domain experts. Retrieved documents that are part of the quasi-gold
standard are true positive. However, the quasi-gold standard cannot distinguish
whether all other retrieved documents are false positive or false negative. In the
context of Wikipedia, a quasi-gold standard is capable of determining if a retrieved
document is a relevant recommendation for a topically related Wikipedia article, but
not, if a recommendation is irrelevant.

Click Streams

In 2015 Wikimedia Research released a click stream dataset for the English Wiki-
pedia [45]. The dataset consists of aggregated referrer information for Wikipedia
articles for 11 month between January 2015 and January 2017. For instance, with
the click stream data you can visualize the incoming and outgoing traffic to the
“London” article (Figure [2.3).

More interesting for our use case, this data also allows to determine the number
of clicks on out-links for the available articles. For out-links, which occur multiple
times in an article, only the total number of clicks is provided. The number of clicks
on a link can be considered as a judgment of relevance, because we assume that the
more relevant a linked document is the more frequent its link gets clicked. Therefore,
click stream data can also be used as quasi-gold standard for evaluating recommender
systems. Instead of a binary relevance classification, which “See also” links enable,

click streams allow a classification on a cardinal scale, i.e. the number of clicks per
link.
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Figure 2.3: Visualization of click stream data. Incoming and outgoing traffic to the
“London” article on English Wikipedia during January 2015.

Click streams are only provided in the English language. In order evaluate simple
English and German Wikipedia with click streams, the dataset must be translated.
In this done in pre-processing step as Flink job. The Flink job maps each English
article title to its unique page id and then finds the article title in corresponding
language from the Wikipedia inter-language link datasetﬂ

“See also” Links

Aside from their main content, Wikipedia articles contain pointers to additional
information in form of references or external links, but also a so-called “See also”
section (Figure . The Wikipedia guideline states that this section should include
a list of internal links to topically related Wikipedia articles. The purpose of “See
also” links is to enable readers to explore tangentially related topicsﬂ The links can
assist readers in finding related articles. For our evaluation, we assume that “See
also” links correlate with the expected results of a recommender system.

Referring to Manning [25], the “See also” links are a user-generated judgment
of relevance, i.e. they are a quasi-gold standard. When using “See also” links as a
quasi-gold standard, we can classify document relevance as follows:

3https://en.wikipedia.org/wiki/Help: Interlanguage_links
‘https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Layout
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Recommendations to other
Wikipedia articles

Figure 2.4: “See also™links from the “Digital library” Wikipedia article.

The documents that the investigated similarity measures retrieved and that exist
as “See also” links are judged as relevant. Retrieved documents for which no “See
also” link exists are classified as irrelevant. At this point, we see a problem: We
expect the “See also” links to be an incomplete gold standard, since Wikipedia’s
volunteers, whose main objectives might be creating textual content rather than
providing literature recommendations, create this content. Even if a retrieved docu-
ment cannot be found within the “See also” links, it still can be topically related, i.e.
relevant. Therefore, we can decide if a result is relevant, but not if it is irrelevant.
A true binary classification is not possible. Hence, we expect a precise true positive
classification for documents that exist as “See also” links, while many results could
be classified as false negative without document similarity measure failures, when
the retrieved document are simply missed by “See also” links. Consequently, the
performance measure should consider these properties of a quasi-gold standard by
not excessively penalizing recommendations for documents that cannot be classified
as relevant.

Similar to the translation of click stream data set from English to simple En-
glish and German, “See also” links are also combined across Wikipedia languages to
increase the coverage of the gold standard.

13
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Edit History

One of the many data dumps provided by Wikipedia contains information on what
articles a user has edited, i.e. the edit history of Wikipedia author{’]l We expected
that this data can be also utilized as quasi-gold standard, if the following assumption
is correct: Wikipedia authors tent to work on articles that are topically related.

Rank Recommendation Co-edits

Seed article | List of planets

1 Fire 13
2 Evolution 12
3 Tom Kaulitz 12

Seed article | Fast & Furious 7

1 Bernie Sanders D

2 2014 North American polar vortex

3 2015 San Bernardino shooting 4
Seed article | Dragonfly

1 Evolution 11

2 Business

3 Central processing unit 8

Table 2.1: Edit history recommendations (simple English). Co-edits is the number of
authors who simultaneously work on the seed article and the recommended article.

To test this assumption, we generated recommendations from the edit history by
extracting co-edited articles from authors of a given source article and then ranking
the co-edited articles by the number of authors who work at the same on the source
and co-edited article. A sample of the recommendations is shown in Table 2.1} From
this and other samples we conclude that our assumption is wrong. The generated
recommendations seem to have no topical relatedness with the seed article. For
instance, the article of the member of a German pop band “Tom Kaulitz” is irrelevant
as recommendation for “List of planets”. Similarly, the politician “Bernie Sanders”

SLatest edit history dump from simple English Wikipedia (gz-File, +300MB): https://dumps.
wikimedia.org/simplewiki/latest/simplewiki-latest-stub-meta-history.xml.gz
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is irrelevant to the action movie “Fast & Furious 7”. Therefore, we dispose the edit
history as quasi-gold standard.

2.3 Co-Citation Proximity Analysis

The concept behind our recommender system is Co-Citation Proximity Analysis
(CPA), which was introduced by Gipp and Beel in 2006 [I]. It was not originally
developed for finding related Wikipedia articles, instead it originated from the field
of library science. To be precise, original CPA aims to measure similarity of scien-
tific documents based on co-citations proximity. While CPA itself is relatively new,
because only in recent year more full-text documents got available, the idea of a
co-citation-based similarity measure namely Co-Citation was already published in
1973 by Small and Marshakova-Shaikevic [42] 26].

Two documents A and B are in a co-citation relationship if cited by other docu-
ments C or D simultaneously (Figure . This has the advantage that the similarity
measurement is not purely based on internal features as, for instance, in Bibliographic
Coupling [27]. Instead, Co-Citation evaluates the citations that a document receives,
i.e. external features, which are at the same time an indicator for relevance. The
number of papers citing two documents together (co-citations) corresponds to the
co-citation strength. The documents A and B in Figure have the co-citation
strength of two as both are co-cited by C and D.

CPA extends this concept by utilizing the additional information implied in the
citation marker, i.e. the position of a citation within the text. CPA’s idea is that,
when citation markers of co-cited documents are in close proximity, the documents
are more likely to be similar (Figure . The benefit of using co-citation proximity
has been shown in several studies [24], 15, 21]. In their original publication, Gipp
and Beel distinguished five levels of citation proximity based on the citation marker:
same sentence, same paragraph, same chapter, same journal and same journal but
different year. For instance, documents co-cited in the same sentence are more similar
to each other than documents co-cited in the same paragraph. Depending on their
proximity level, each co-citation is assigned with a fixed value called Co-Citation
Proximity Index (CPI).

In our previous work [39], we derived a more general CPI model that can be also
used for Wikipedia links (Equation . We defined a mxm-matrix with element
0; ; that stores the link position for all m documents. Specifically the column for
document j, 0. ; holds the positions for links to other documents in words counted
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Figure 2.5: Co-Citation relationship between documents [I7]. Documents A and B
are both co-cited by C and D.

from the beginning oft the document. Then, the CPI for a document pair a and b
is the sum over their link distance pairs in all m documents damped by a negative
exponential parameter «, where a defines how the link distance is weighted.

CPI(a,b) = Y Aj(a,b)™ =) (2.1)

J=1 J=1

n e {|6a,j — 5b7j|_a 5a,j >0A 61,7]‘ >0

0 otherwise

The two previously conducted offline evaluations [39] suggested the values a; =
0.81 (“See also” evaluation) and ap = 0.9 (click stream evaluation) as best parameter
for the English Wikipedia.

2.4 Term Frequency - Inverse Document Frequency

Introduced by Jones and Salton [20, 37|, Term Frequency Inverse Document Fre-
quency (TF-IDF) is nowadays the theoretical basis for many IR applications. For
instance, it is also the the conceptional foundation for MLT. TF-IDF is a term
weighting schema, i.e. it defines the importance of a term in a document or a search
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Figure 2.6: Co-Citation Proximity Analysis. Document B and C are stronger related
than document B and A, since their citation markers are in close proximity [17].

query and therefore can be also used to measured the semantic similarity of docu-
ments. The term importance increases if the term frequency (TF) in a document
in high while the term appears with low frequency in the corpus and vice versa.
The appearance of a term in the corpus can be understood as its specificity, which
can be quantified as an inverse function of the number of documents in which it
occurs and is called inverse document frequency (IDF). In 1972 IDF was proposed
by Jones [20] as heuristic method and later Robertson [34] provided a information
theoretic justification for it.

Table 2.2: Common variants of IDF weighting schema

Weighting schema | IDF weight
Classic IDF 109(%)
Smooth IDF log(=H)
Probabilistic IDF log(~)
Okapi BM25 IDF [35] | log("=2:505)

An alternative approach to TF-IDF is Okapi BM25 [35]. Okapi BM25 is based
on a probabilistic model for document retrieval. If it is known that a term 7 occurs
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in n documents within a collection of size N, then the probability of any random
document containing the term 7 is ¢ . The log of this probability gives the informa-
tion content of the word. This probability model has a strong theoretical basis for
finding the most likely relevant documents and provides also an IDF term.

Table shows four variants including Okapi BM25 of inverse document fre-
quency functions for the term ¢, where N is the total number of documents in the
corpus D (N = |D|) and n, is the total number of documents that contain term ft.
These variants are later used to derive the Inverse Link Frequency factor for CPA.

2.5 Elasticsearch

Elasticsearch, developed by Elastic an US-based company, is a full-text search engine
build on top of Apache Lucene [2§]. It is written in Java and available under Apache’s
open source license. Elasticsearch comes with all of Lucene’s search functionalities
including the MoreLikeThis component, which can be utilized as text-based recom-
mender system. Because of its distributive and scalable design, Elasticsearch is also
used by the Wikimedia Foundation to provide a search feature for Wikipedia (Section
. For ranking the search results Elasticsearch relies on the concept of TF-IDF
and the Vector Space Model [36]. Aside Elasticsearch search functionalities, we use
it as key-value store to retrieve CPA recommendations that are pre-computed with

Apache Flink (Section [4.3).

2.5.1 Scoring Function

In the following we introduce the scoring function that is used by FElasticsearch
(Lucene) to rank search results according to their relevance to the search query. The
scoring function is as well used for the MoreLikeThis feature. A detailed description
can be found in Elasticsearch documentation [

score(q, d) = queryNorm(q) X coord(q, d) Z tf(t, d) x idf(t)?
teg (2.2)
xboost(t) x norm(¢, d)

Shttps://www.elastic.co/guide/en/elasticsearch/guide/current/
practical-scoring-function.html
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The score function score(q, d) represents the relevance score of a document d for
the query ¢ (Equation [2.2), whereby candidate documents are retrieved in a first
step with Boolean query. The factors of the score function are defined as:

1. tf(t € d) = v/frequency is the term frequency for term ¢ in document d.

2. 1df(t) = 1+ log(%) is the inverse document frequency for term ¢, whereby
fi is the document frequency and |D| is the total number of documents in the

corpus.
3. queryNorm(q) is the query normalization factor.

4. coord(q, d) is the coordination factor.

5. boost(t) is the boost that has been applied to the query.

6. norm(t,d) is the field-length norm, combined with the index-time field-level
boost, if any.

For the CPA recommendations we also rely on the score function, whereby the
TF-IDF and query factors at set to one and only the boost factor is used to rank
documents according to their recommendations score (Section {4.3).

2.5.2 MoreLikeThis

Elasticsearch’s MoreLikeThis (MLT) feature works similar to its keyword search en-
gineﬂ. MLT relies on the same inverted index and scoring function (Equation [2.2)).
However, in contrast to the keyword search a seed document, for which similarity
documents should be returned, is used as query input. For each term of the query
document the TF-IDF weight is computed. Then, all terms are then sorted accord-
ingly and the top terms (by default 25) are selected and used to query the search
index, whereby the boost factor is set to the TF-IDF of the corresponding term.
Finally, all retrieved documents are then ranked based on the score function.

SCOTewikipedia (¢, @) = score(q, d) x popularity(d) (2.3)

Wikipedia modified MLT by including an additional popularity factor, which is
based on page views on document d, in the final score function (Equation . By

"http://cephas.net/blog/2008/03/30/how-morelikethis-works-in-lucene/
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doing so, Wikipedia solves a problem that we found in our previous study [39]. That
is that MLT tends to retrieve niche articles that are barely relevant. The popularity
factor penalizes those niche articles.

2.6 MediaWiki

MediaWiki is an open source Web application for Wikis written in PHP, originally
for use on Wikipedia. It is now also used by several other Wikimedia Foundation
projects and third-parties.

MediaWiki-Vagrant MediaWiki-Vagrant is a portable MediaWiki development
environment. It allows to simulate the Wikipedia productive environment in a virtual
machine. We use MediaWiki-Vagrant to pre-test all code locally before deploying it
to a server.

CirrusSearch CirrusSearch is a MediaWiki extension that uses Elasticsearch to
provide enhanced search features over the default MediaWiki search. Besides key-
word based searching, CirrusSearch offers also a series of prefix queries with ad-
ditional filtering functions. For instance, using the prefix incategory:Music would
return only articles from the “Music” category as search results. MoreLikeThis is in-
tegrated in the same fashion. With morelike: Water all text-based recommendations
for the “Water” article are returned. The Wikimedia Foundation uses CirrusSearch
for all its Wikimedia projects. For the integration of our CPA recommendation, we
also rely on a modification of the CirrusSearch extension (Section [4.3)).

To sum it up, MediaWiki and its extensions are the center-piece of the Wikipedia
website and, in order make the CPA recommendations accessible to Wikipedia’s
users, we must work with the MediaWiki source code.

2.7 Apache Hadoop & Flink

With its several million articles and large amounts of logging data, Wikipedia’s
data exceeds the capabilities of a single computer. Thus, techniques for distributed
computing and storage are needed.
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Apache Hadoop Hadoopﬂ is a common open source framework for this task.
It consists mainly of two components: Hadoop Distributed File System (HDFS)
for fault tolerant distributed storage with a master-slave architecture and Hadoop
MapReduce, an implementation of the MapRuce programming model for “Big data”
processing in parallel.

Apache Flink Formerly known as Stratosphere and started as research project of
TU Berlin, Apache Flinkﬂ is a part of the Apache Software Foundation [11,[2]. Apache
Flink is, like Hadoop, an open source Java framework for processing “Big Data”. It
is capable of batch and streaming data processing. Yet, Flink’s architecture is based
on streaming model, it iterates data by using streaming. Its pipelined architecture
allows processing the streaming data faster with lower latency than micro-batch
architectures as in other frameworks like Apache Spark [40]. Flink does not come
with its own storage engine, but it can be built upon a distributed file systems like
HDFS. Figure[2.7)illustrates the layer architecture of Apache Flink'™} Flink is written
in Java and Scala, whereby we use Flink’s Java API| from version 1.1.

Hadoop’s MapReduce programming model enables processing of large datasets
and is suitable for many real world use cases. Nevertheless, writing efficient applica-
tion in MapReduce requires strong programming skills and in-depth knowledge of its
architecture. Apache Flink has been developed, in order to allow non-experts to use
such systems, save development time and make application code easier to understand
and maintain.

The goal of this thesis is the deployment of a Flink-based recommender system
into the Wikipedia infrastructure. Thus, an optimized implementation is essential.
Therefore, Apache Flink offers us the opportunity to benefit from its “Big Data”
technologies such that we can focus on high level performance optimizations. Other
frameworks like Apache Spark offer similar optimizers and, therefore, they would be
also suitable for the development of a large-scale recommender system.

8https://hadoop.apache.org/

9http://flink.apache.org/

Ohttps://ci.apache.org/projects/flink /flink-docs-release-1.1 /internals /components.html
Hhttps://ci.apache.org/projects/flink /flink-docs-release-1.1/
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Figure 2.7: Apache Flink layer overview. The DataSet API (Batch processing) is
suitable for processing large data chunks like Wikipedia dumps.

2.8 Apache Oozie

Wikipedia’s authors frequently create new or rewrite old articles. Consequently,
the generations of recommendations needs to take place in frequent time intervals
to reflect content changes. For this reason, a scheduler is needed to manage the
recommendation generation. Apache Oozie [19] is a Web application written in Java
for scheduling Apache Hadoop jobs. Oozies allows the administration of multiple
jobs as a single logical unit. It is integrated with the Hadoop stack, with YARN as
its architectural center, and supports natively Apache MapReduce or Apache Spark
jobs. Due to Flink’s abilities of running in a YARN environment, Flink jobs can be
executed as well with Oozie. Moreover, Oozie can also schedule system-specific jobs,
like Java programs or shell scripts.

The Oozie web applications provides greater control over jobs and also makes
it easier to repeat those jobs at predetermined intervals. Aside job scheduling at
fixed time frame, jobs can be scheduled based on the existence of data in HDF'S (e.g.
newly available Wikipedia data). Hence, Oozie is suitable for the task of frequent
recommendation generation when a new Wikipedia dump gets available.

There are two basic types of Oozie jobs:

1. Oozie Workflow jobs are Directed Acyclical Graphs (DAGs), specifying a se-
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quence of actions to execute. The Workflow job has to wait

2. Oozie Coordinator jobs are recurrent Oozie Workflow jobs that are triggered
by time and data availability.

The Wikimedia Foundations relies on Apache Oozie for all data processing tasks
within their Wiki projects. This involves jobs like the aggregation of page view data.
But also a job exist to read from HDFS and populate the data into Elasticsearch.
When we want to make the CPA recommendations available to CirrusSearch, this is
exactly what we need to do. Therefore, we can reuse the code of this job, write a
new job and integrate it into Oozie such that it can be run frequently.

2.9 Performance Measures

In our offline evaluation the performance of CPA is measured with a combined objec-
tive function for the top-k recommendations. The top-k recommendations with k = 3
are evaluated, since in the online experiment, i.e. the Wikipedia Android app, are
also only three recommendations presented to the user. The performance measures
used by the objective function are: Mean Average Precision for the “See also™link
evaluation, Click Trough Rate for click stream evaluation and two recommendation
coverage metrics for both quasi-gold standards.

Mean Average Precision

The rank-based performance measure Mean Average Precision (MAP) is widely used
among the information retrieval community.

Q| m;
1 1
MAP = — E — E Precision(R,k) (2.4)
@l =1 " =

For a single query or seed document, Average Precision is the average of the
precision value obtained for the set of top k& documents existing after each relevant
document is retrieved, and this value is then averaged over all queries. That is, if
the set of relevant documents for a query ¢; € Q is {dy, ... dp,} and Ry is the set of
ranked retrieval results from the top result until you get to document dy, then MAP
is defined as in Equation [2.4]
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We use for the “See also” link evaluation on MAP as performance measure,
whereby all articles with “See also” links correspond to the queries () and retrieved
documents are classified as relevant if they are part of the “See also” links.

Click Through Rate

The Click Through Rate (CTR) is the ratio of users who click on a specific link to
the number of impressions, i.e. the number of total users who view the link (Equa-
tion . It is commonly used to measure the performance of online advertisements.
But also in the context of RS the CTR can be understood as relevance judgment:
The more often a recommendation is getting clicked, to more relevant it is. But
CTR should be used with precaution. For instance, Zheng et al. [46] showed that
CTR and relevance do not always correlate and concluded that “CTR may not be
the optimal metric for online evaluation of recommender systems”.

lick
CTR = — 0 00 (2.5)

Impressions

In our offline experiment with the click stream data we use the CTR as perfor-
mance measure. However, we normalize the metric such that in the optimum CTR is
equal to 1 (Equation . Therefore, we do not use the ratio of impressions, instead
we divide the number clicks on our top-k recommendations by the number of clicks
that the top-k of the most clicked out-links received, i.e. the theoretical optimal
recommendations.

Clicks on Recommendations

CTRopt =
PY ™ (Clicks on Most Clicked Out-Links x

100 (2.6)

Recommendation Coverage

The use of recommendation coverage and serendipity as performance measures gets
more attention from the RS community. The on-going debate on filter bubbles and
echo chambers will also enhance this trend. While coverage can be understood as
the degree to which the recommended items cover the set of all available items,
serendipity is concerned with the novelty of recommendations and how they may
positively surprise the user [16].

With this regard, we also make use of two metrics that represent the recommen-
dations coverage. First, there is the inverse number of recommendations of the most
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recommended article. For instance, let the “United States” article be with 1000 rec-
ommendations the most recommended article, then the corresponding score would be
ﬁ. Second, we measure the distinct recommendation % that is the number
of distinct recommendation Rg;sine: in ratio to the total number of available articles
D. Both recommendation coverage scores are normalized, i.e. in the optimum each
score is equal to 1. Moreover, the scores can be computed independently from our

quasi-gold standards.

Combined Objective Function

Quantifying the performance of recommender system is generally difficult due to the
subjective nature of recommendation. Yet, we need to decide for specific parameters
of the CPI model. Thus, we define an objective function f(, D) that combines the
four different performance measure as in Equation 2.7, where D is the document
corpus and 6 are the model parameters.

£(0, D) = 0.45 x CTRopt(6, D) + 0.45 x MAP(6, D)

| Rdistinct | 1 (2 . 7)
—— +0.05 %
D | Riop|

Each measures is weighted according to our subjective judgment. We account the
“See also” and click stream evaluation as most important and therefore we weight
both with 45% each, whereas the two recommendation coverage measures are weight
with 5% each because we consider them as less important.

+0.05 x

2.9.1 Online Metrics

For the evaluation we rely on performance measures that can be derived from Wiki-
pedia’s event logging system. Hence, CTR (Equation[2.5]) is the primary performance
measure, whereby a click is defined as the process of a user clicking on a recommended
article and a view as a user viewing a set of recommendation. However, we are aware
that a click on a recommendation does not necessary mean that the recommended
article is relevant. A user might click on an article because of an exciting title but as
soon as the user reads the first sentence he or she goes back to the previous article.
For this reasons we also measure Long Clicks. As long clicks we define clicks that
make the user spending at least 10 seconds on the recommended article and viewing
at least 50% of the article.
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In addition, we also measure the time spent (in seconds) on an article and the
maximum viewed of an article (in percentage). The latter two performance measures
are evaluated because for Wikipedia the overall objective on a new feature is to
increase the user-engagement. An increase in clicks on recommendations does not
necessary lead to an overall increase in user-engagement. Instead, clicks on other
features might decrease.

Discussion In this chapter we discussed the concepts of the text- and link-based
recommender systems, relevant technologies like Elasticsearch and Apache Flink, the
Wikipedia data set and performance measures that we use for this work. All these
background informations represent the foundation for development and evaluation
of the investigated link-based recommender system. Before we describe in detail the
research approach, we first give an overview about related work that is relevant to
our research.
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Chapter 3

Related Work

In this section we present related work from recommender system research whereby
we focus on evaluation studies and papers that address evaluation-related issues. We
refer to investigation of the effect of co-citation proximity. We start this section with
a summary of the preliminary study that is the foundation of this thesis.

3.1 Preliminary Study

Schwarzer et al. [39] were the first to apply the idea of CPA on Wikipedia. They
transfered the concept from citations in scientific papers to links in Wikipedia articles.
Thereby, they introduced a general approach to compute proximity (Equation .
Schwarzer et al.’s offline evaluation was based on Wikipedia’s “See also” links and
click streams. Recommendations from MLT, CPA and classical co-citation analysis
were compared for English Wikipedia articles. But from the results of the study, they
could not draw a clear conclusion regarding the superiority of one recommendation
algorithm. MLT and CPA seemed to perform similarly well.

As shown in Figure[3.1], CPA achieves the best result with absolute clicks, whereas
MLT outperforms CPA in terms of CTR. Yet, the positive effect of proximity on co-
citation analysis is visible through out all evaluations, since CPA always outperforms
classical co-citation analysis. Due to the promising results of CPA, they state that
link-based recommendations need to be subject to future research.
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Figure 3.1: Results of preliminary study. Click stream evaluation with absolute clicks
and Click-Trough-Rate (CTR) based on 2,5M articles.

3.2 Recommender System Evaluations

Gunawardana & Shani review in their paper from 2009 [18] the proper construction of
offline experiments and the corresponding accuracy metrics for deciding on the best
performing recommender system. They discuss evaluation metrics like Precision-
Recall or Root of the Mean Square Error (RMSE) and general recommendation
techniques like predicting ratings. Gunawardana & Shani explicitly emphasize the
importance of user interface design and the role of the recommendation in an ap-
plication. Researchers need to take into account whether a recommendation system
is only a supporting system or the main component. Furthermore, they empirically
demonstrate with different data sets that in some cases two algorithms can be ranked
differently by two metrics over the same data set. Thus, we should not focus on a
single metric.

In 2016 Beel et al. [5] investigated the reproducibility of recommendation system
research. Even if reproducibility should be a key element of scientific research, Beel
et al. found that recommendation system research often lacks reproducibility. Minor
variations in approaches and scenarios, e.g. a different test collection, can lead to
significant changes in a recommendation performance and therefore reproducibility
is difficult to ensure. For future research they propose for instance to foster the
development and use of recommendation frameworks and to establish best-practice
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guidelines for recommendation system research. From Beel et al.’s findings we derive
for this work that our recommender system should be evaluated with at least two
test collections.

Moreover, Beel & Langer [7] published one of the few studies from the field of
research paper recommender systems which makes use of three evaluations methods,
i.e. offline evaluation, online evaluation and user study. They investigate in detail
how the evaluation methods effect the outcome and show that the results also can
be contradictory. For the evaluation Beel & Langer rely on data from the literature
management tool Docear [§]. Regarding the evidence of offline evaluation, they
doubt that “researchers will ever be able to reliably predict whether human factors
affect the predictive power of offline evaluations” and recommendation that ideally a
recommendation system with evaluate with both online evaluation and user-study. In
the case of their online evaluation they furthermore conclude that Click-Trough-Rate
is the most appropriated evaluation metric for their application. However, this is not
generally true as they state. Other use cases may favor other evaluation metrics.

Dooms et al. test in [I3] an event recommender system on a popular Belgian
cultural website. They apply content-based, collaborative filtering and hybrid ap-
proaches, whereby the hybrid recommendation system generates the most promising
results. As evaluation Dooms et al. conduct both user-study and offline evaluation
even if they state “offline evaluation metrics are inadequate for this task”. In the user
study the participants were ask to give explicit feedback in an questionnaire of 14
questions regarding the recommendation performance. The comparison of the offline
and user study results reveals a small change in the ranking of the recommender
system. Consequently, we should not neglect the validity of our evaluation even if
the contradict each other.

Bambini et al. [3] compare collaborative and content-based recommendation sys-
tem for television programs and video-on-demand content in the IPTV service, Fast-
Welffl They evaluate both recommendation techniques with an accuracy-oriented
offline evaluation and online evaluation. In the offline evaluation Bambini et al. also
evaluate serendipity by doing a long-tail test, i.e. they excluded the top-10 items
from the recommendation lists and then measure the recall. In the online experi-
ment the user feedback is measured in terms of the percentage of views that have
been triggered by the recommendation system. In addition to the direct effect of the
recommendation system, they also measure the overall impact of the usage of the
[PTV service, i.e. lift factor regarding the total number of views and sales.

"http://www.fastweb.it/
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In 2007 Ollivier & Senellart [31] compared Green Measure to several other meth-
ods for finding related pages in the case of the English version of Wikipedia. They
found out that Green Measure has both the best average results and the best robust-
ness compared to Co-Citation, Cosine similarity with TF-IDF, PageRank of Links
and Local PageRank. A user study measured the performance of each method.

In the study from 2010 Davidson et al. [12] demonstrate how they developed
and tested a video recommender system for YouTube. Video recommendations are
generated by using a user’s personal activity as seeds and expanding the set of videos
by traversing a co-visitation based graph of videos. They rank the recommendations
using a variety of signals for relevance and diversity. The evaluation is performed in
online manner whereby the data collected using A /B tests from within the YouTube
production system. YouTube users were diverted into distinct groups where one
group acts as the control or baseline and the other group is exposed to the novel
recommender system. The two groups are then compared against one another over
click rates.

3.3 Effect of Co-Citation Proximity

The effect of co-citation proximity is gaining more attention from the research com-
munity in the recent years. This is mainly due to the increased availability of full-text
documents.

For instance, Knoth et al. [21] tested the use of CPA as practical recommender
systems for research papers. They developed a scalable recommender systems from
a corpus of 368,385 full-texts articles. In their experiments Knoth et al. quantify the
proximity as minimum, sum or mean of characters between co-citations smoothed
with logarithm and normalized with the co-citation count. With an user survey they
show that CPA can outperform classical co-citation recommendations when using
sum or mean as proximity function.

Beel et al. [4] tested in a study on research paper recommender systems if the
effect of co-citation proximity can be further improved. In particular, they tested
if the CC-IDF citation-weighting schema, an adaptation from Inverse Document
Frequency, is beneficial. Their click-oriented evaluation revealed that CC-IDF was
not more effective than classical citation-weighting.

With their work on a large-scale recommendation system for the biomedical
knowledge base meta.com, Perrie et al. [32] proved that a CPA-based recommender
system can be used with corpus of 27 million articles in a production environment.
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However, they stress that one problem is that CPA fails to generate recommendations
for 25% of the papers in their experiment.

Discussion The review of related worked shows that recommender system are a
popular subject among the information retrieval community. Past studies address
common issues of recommender system evaluation. We want to learn from these
studies. For example, we can use two test collections and test different performance
metrics to check the variation of the recommender algorithms. Moreover, we see that
offline evaluation are often conducted even if a correlation to real user feedback is
not naturally given. Hence, we aim to conduct an online evaluation for which A/B
testing is a common procedure. With respect to CPA, the preliminary study and as
well as the literature provides promising results which require future investigations
that we want to contribute with this thesis. At the same time, we aim to resolve
CPA issues like the missing ability of generating recommendations for articles.
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Chapter 4

Approach

In this chapter, we present our approach, explain the developed system architecture
and describe the required steps in detail. Since this is a follow-up research, we focus
on elements that we implemented as part of this thesis. The implementation of the
previous study [39] consisted mainly of a Flink job, which was capable of reading a
Wikipedia XML dump, generated CPA recommendations with resolved redirects and
writing the recommendation sets to HDFS as CSV file, and additional Flink jobs for
the offline evaluation. For this thesis, the whole source code was reviewed, optimized
and integrated into the Wikipedia system in order to perform a user-centric instead
of a pure offline evaluation. While cooperating with Wikimedia Foundation, our
work was presented as “Citolytics” project to the Wikipedia community [38].

4.1 System Overview

To provide orientation, we first give an overview of the developed system and its
components. The system is presented in Figure [4.1] Essential for our evaluation
approach is the modification and access to four components from the Wikipedia
system: (1) The Android application needs to be modified to display the link-based
recommendations. (2) We must read from the EventLogging system, where the
tracked user behavior from the Android app is stored. (3) The CPA recommendations
needs be made accessible via the MediaWiki API, which can be done by modifying
the CirrusSearch extension. (4) The Flink job needs to be integrate into the Oozie
pipeline and its results need to be written to Elasticsearch.

Our work regarding each component is explained in the following sections. Sec-
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EventLogging

4 &) o

MediaWiki API

[CirrusSearch extension}

Elasticsearch

Figure 4.1: Overview of Wikipedia’s system architecture and the components that
are needed to deploy the recommender system.

tion describes the optimization of the Apache Flink job. Our modification of
the CirrusSearch extension is disclosed in Section [4.3] The EventLogging system is
introduced in Section Section presents the integrations of recommendation
into the Android app.

4.2 Apache Flink Job for Link-based Recommen-
dation Generation

In order to make the recommender system meet the requirements of a production
system, additional feature were added and the runtime performance was optimized.
Figure illustrates the processing steps. The major changes are explained in the
following paragraphs.

Stop Links Removal

By analyzing the results of the preliminary offline evaluation, we found that links,
which are not part of the main article content, can negatively affect the recommen-
dations. Thus, an additional pre-processing step removes such links, for instance,
from info boxes. This step can be considered as similar to the stop words removal
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Figure 4.2: Schema of the Apache Flink job that generates the link-based recom-
mendations.

step in classical text-based recommender systems. In Figure stop links removals
is part of the extraction of link pairs (step 1).

ID Validation

The original implementation was purely based on the links that were extracted from
the XML dump. But Wikipedia allows authors to create links to article that do
not exist and therefore the output also contained recommendations for non-existing
articles, which are obviously irrelevant for our use case. Thus, we added a post-
processing step that checks whether each recommendation exist as article, i.e. has a
valid Wikipedia ID (Figure [1.2] step 4).

CirrusSearch Output

The Wikipedia setup requires the export of the recommendations to Elasticsearch
from where CirrusSearch can access them. In agreement with Wikipedia developers,
we modified the Flink job such that the output can be written in Elasticsearch
JSON bulk formatf] The bulk format requires article IDs to be included. The ID

"https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
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validation step provides these IDs. The usage of the Flink Elasticsearch data sink
was not possible, since the Wikipedia systems for generating the recommendations
and CirrusSearch are separated.

Testing

All the additional features are making the code more complex and thus harder to
maintain and to hunt bugs. For this reason, we put special emphasis on unit testing.
However, we found that there is no official unit testing framework for Flink. Also,
the third-party implementation by Otto GroupEl was not suitable. Furthermore, we
added the continuous integration tool TravisCIﬁ to the project, whereby we found
that memory expensive Flink unit test could not be handled by TravisCI.

Backup Recommendation

A Albert Einstein

1) Theoretical Physicist

2) Theory of relativity

5) Newtonian mechanics

6) Classical mechanics

Figure 4.3: Backup recommendations are generated from out-links and ranked ac-
cording to the link position.

As Perrie et al. [32] already revealed, one drawback of the link-based method CPA
is that it cannot generate recommendations which have not any in-links from other

’https://github.com/ottogroup/flink-spector
3https://travis-ci.org/wikimedia/citolytics
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articles. Depending on the Wikipedia language the amount varies (see in-links plots),
e.g. approximate 10% articles in the simple English do not have any in-links. For
a recommender system such blind spots are a disadvantage. To limit the number of
missing recommendations, we implemented an additional backup strategy for those
articles: We extract out-links from the article that has not enough CPA recommen-
dations and rank them according to the link position, since we assume that links that
are closer to the beginning of the article are more likely to be relevant. For instance,
“Theoretical Physicist” is the top backup recommendations are the article “Albert
Einstein” because is the the first link in the article (Figure. Independent from the
position, backup recommendations are always ranked below CPA recommendations.
When using backup recommendation the number of articles, for which recommen-
dations are available, increases for German from 1,815,508 to 2,003,264 (+10%) and
for simple English from 106,090 to 121,653 (+14%). Backup recommendations are
part of the recommendation set building step (Figure step 3).

Discussion All the mentioned improvements make the Flink job ready to be de-
ployed in a production environment. The corresponding code of the Flink job can
be found on the Citolytics GitHub repository{]}

4.3 CirrusSearch Integration

With the modification of the CirrusSearch extension we want to achieve that the
Citolytics recommendations become accessible via the Wikipedia API. The Elastic-
search index of CirrusSearch stores all search-relevant article information, e.g. title,
content and others (Listing [1)).

CirrusSearch can perform classical keyword queries but also filter queries on this
index. The CirrusSearch’s abstraction of these query types is called KeywordFeature.
A KeywordFeature allows the modification of the Elasticsearch query if a certain
keyword is part of the query string. For instance, if incategory: is used as prefix in
a query string, a boolean filter for the category field is added to the query. In the
same fashion, we implement the CitolyticsKeywordFeature.

In order to access the recommendation sets, we add an extra citolytics field to
each article in the Elasticsearch index (Listing . The citolytics field holds all
information necessary for generating the corresponding query, which is the title of

‘https://github.com/wikimedia/citolytics
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1 // /wiki_content/page/1

2 ({

3 "title": "Albert Einstein"

4 "content": "...",

5 "category": "...", // ...

6 |}

7 // /wiki_content/page/2

8 |1

9 "title": "Newspaper"
10 "content": "...",
11 "category": "...", // ...
12 }
13| //

Listing 1: ElasticSearch index for Wikipedia articles in CirrusSearch.

1 // /wiki_content/page/1

2 ({

3 "title": "Albert Einstein"

4 "content": "..."

5 "category": "...

6 "citolytics:" [

7 { "title": "Physics", "score": 1.5 },
8 { "title": "Germany", "score": 1.2 }
9 1, // ...

10 |}

11 /)

Listing 2: ElasticSearch index for Wikipedia articles with Citolytics recommenda-
tions.

the recommended article and the recommendation score (CPI). Other options for
storing the recommendations like a separated index were discussed but rejected by
Wikimedia Foundation developers.

The query prefix citolytics: triggers the CitolyticsKeywordFeature. When, for
instance, the query string is citolytics:“Albert Finstein”, the recommendations for
the article “Albert Einstein“ should be returned. This is accomplished with two
steps: First, the article for the recommendations are requested is queried with an ex-
act match query on the title field. Second, based on the information provided in the
citolytics field the main query in generated that filters by the recommended titles and
then uses boostingﬂ for sorting the recommendations by their scores. The resulting

Shttps://www.elastic.co/guide/en/elasticsearch/guide/current/
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query is shown in Listing [3] The corresponding pull request for the CitolytisKey-
wordFeature can be found on Wikipedia’s code review platform Gerritﬂ

{
"query": {
"bool": {
"should": [
{
"term": {
"title.keyword": { "boost": 1, "value": "Physics" }
}
},
{
"term": {
"title.keyword": { "boost": 0.5, "value": "Germany" }
}
}
1,
"minimum_number_should_match": 1,
"filter": [ ]
}
}
}

0w N O R W N -

I S R i
O © 0 N O Uk W N = O ©

Listing 3: Simplyfied ElasticSearch query for retrieving recommendation for the
“Albert Einstein“ article.

4.4 Apache Ooozie Integration

The integration of the link-based recommendations into Wikipedia’s Oozie pipeline
allows the frequent generation of new recommendation as soon as Wikipedia’s content
is updated. For this purpose, we established the following procedure in agreement
with the Wikipedia developers:

A cron job frequently checks the Wikipedia XML dump Websitem for new available
dumps. When a new dump gets available, it is downloaded and written to HDFS. A
Ooozie Coordinator waits for the dump to be written to HDFS and then starts the
Oozie Workflow. The Oozie Workflow consists only of two actions: First, it executes
a shell script, which launches the Flink job. Then, a PySpark script reads the output

query-time-boosting.html
“https://gerrit.wikimedia.org/r/#/c/329626/
"https://dumps.wikimedia.org/enwiki/
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from the Flink job, which is in Elasticsearch bulk format and located on HDFS, and
sends the output to Elasticsearch.

4.5 EventLogging

To test the performance of the recommender systems, we need to evaluate the data
that is collected in the A/B test in the Android app. Wikipedia’s EventLogging
systemﬂ (EL) is a tool for collecting this data. EL is used across several Wikimedia
projects for modeling, logging and processing analytics data. Also, the Android app
supports EL, i.e. at certain events the app send JSON-decoded log data via a HT'TP
request to Wikipedia’s EL server. For modeling log data fixed schema are defined’|
of which three are relevant for our evaluation. The EL schema are presented in the
Appendix.

4.6 CPI Optimization

Aside technical improvements, this thesis has also the objective to find out whether
the concept of CPA, i.e. the CPI model, can be further improved. For this reason
we describe in the following different approaches to optimize the CPI model.

4.6.1 Proximity Definitions

When computing recommendations based on the proximity of co-links, the quantifi-
cation of the proximity is essential. In the previous study [39] we quantified the co-
link proximity as distance in number of words between the two links (Equation ,
which we call in the following the absolute proximity Aj-‘bs"lute(a, b). However, we see
two alternative definitions:

Relative Proximity Wikipedia consists of articles with variable length (Figure.
Co-links in a long article can be further apart and therefore result in a lower proximity
score then co-links in a short article of only a few paragraphs.

|00, — b 4

A;elative(a7 b) — |j| (41)

Shttps://wikitech.wikimedia.org/wiki/Analytics/Systems/EventLogging
Yhttps://meta.wikimedia.org/wiki/Research:Schemas
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To capture this, we define the relative proximity A;elati"e(a, b) in a document j
for the co-link of @ and b that is their absolute proximity |0, ; — dp ;| normalized with
the total number of words of the linking article |j| (Equation [4.1]).

Structure Proximity Gipp and Beel proposed in the original publication of CPA [I]
the usage of predefined proximity levels to find related scientific papers, e.g. for a

co-citation from within a sentence account %, for paragraph-level i etc. up to journal-

level co-citations. We argued in [39] that this can not be transfered to Wikipedia

due to the non-uniform structure of Wikipedia articles. Anyhow, this hypothesis

needs verification and therefore we perform our evaluation also with a proximity

Astriete(q, b) based on the article structure that is defined as in Table 4.1, The

scores differ from the original proposal to capture the different proximity levels of

Wikipedia articles compared to scientific papers.

Table 4.1: Definition of structure-level proximity that is used for CPI computation.

Co-link Level | Score
Paragraph 1/4
Subsection 1/8
Section 1/12
Article 1/20

To find out which proximity definition is superior, we compare absolute, relative
and structure proximity in an offline evaluation.

4.6.2 «a-parameter

In addition to the proximity definition, finding the best a-parameter is also part of
the CPI optimization. The a-parameter defines in our CPI model (Equation the
non-linear weighting of the proximity A. Generally co-links in close proximity should
have a higher score than co-links far apart. Hence, o needs to greater or equal to
zero. Moreover, the higher o the closer the co-link proximity needs to be to have an
effect on the final CPI score. This relation is illustrated by the plots in Figure
Due to different link usage in simple English and German Wikipedia, we expect the
a-parameter to be different for each corpus.
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Figure 4.4: Effect of different a-values on absolute and relative proximity. The higher
« the closer the proximity needs to be to affect final CPI score.

4.6.3 Inverse Link Frequency

The manual analysis of the previous study [39] revealed CPA’s tendency to often
recommend articles about years or political and geographic entities, because such
article receive many in-links. The article “United States” was, for instance, the most
recommended article while being also the article with the most in-links. Such articles
are usually somehow relevant but for most recommendation scenarios too general.
In order to give a preference to more specific recommendation and to penalize too

general ones, we adapted the concept of Inverse Document Frequency from TF-IDF
(Section to the Inverse Link Frequency (ILF):

Table 4.2: ILF weighting schema derived from common IDF variants. |D| is the
number of documents in the corpus and n, is the number of in-links of document a.

Weighting schema | ILF weight
Classic ILF log(%)
Smooth ILF l09<12_|aD|)
Probabilistic ILF log(mn;a”a)
Okapi BM25 ILF [35] zOg(_IDL;TOgOﬁ)
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The concept is already used in the field of citation analysis for scientific papers
as CC-IDF citation-weighting schema [10]. However, Beel et al. [4] have shown that
CC-IDF has about the same effectiveness as plain citation weight in a scientific paper
recommender system. Yet, we test ILF as a logarithmic factor that is multiplied with
the CPI score and depends on the number of in-links of the recommended article (and
the total number of documents in the corpus). For the implementation of ILF we
utilize common TF-IDF weighting schema (Table and [4.2)), where |D| is the
number of documents in the corpus and n, is the number of in-links of document a.

We understand ILF as additional factor to the proximity A. Thus, we first
conduct an offline evaluation to find the best proximity definition and then use the
best proximity definition to find the best ILF factor in an additional evaluation.

4.7 Wikipedia Android App

Z 2 w30 % E3,23:27

= (English) Official Homepage

=  (German) Homepage of the Student's

Council and Government

:chnische " Mapof campus
iversitat
li Read more
. . . ; Berlin
Technical University of B Copit ity of Germany
Berlin
T East Berlin
e Soviet sector of Berlin between 1949 and
1990
The Technische Universitat Berlin,
known as TU Berlin and unofficially as s West Berlin
the Technical University of Berlin, is a a Political enclave that existed between
research university located in Berlin, Germany.
It was founded in 1879 and became one of Seite im Browser ansehen

the most prestigious education institutions in Zuletzt aktualisiert Vor 4 Tagen — Diskussion

Der Inhalt ist verfiigbar unter CC-BY-SA 3.0, sofern
nicht anders angegeben

Figure 4.5: Wikipedia Android app. Article header (left). Recommendations are
displayed in the “Read More” section at the bottom of each article (right).

The Wikipedia Android app is the front end, where we aim to serve the Citolytics
recommendations. In fact, Wikipedia offers only in its mobile apps machine gener-
ated article recommendations. The actual Wikipedia website does not include a
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recommender system. Aside from this difference, the content is identical in both
the mobile apps and the website. Figure shows the article view from within the
Android app. The recommender system is located with the heading “Read more” at
the bottom of each article page. By default three recommendations with their corre-
sponding preview images are presented to the users. The display of preview images
is problematic in terms of the evaluation: Images can significantly affect the click
behavior. So we cannot rule out that an article is mainly clicked because of its im-
age and not because of its content being relevant. Hence, click-oriented evaluations
should be taken with precaution.

The actual evaluation mechanism from the Android app is developed as simple
A/B test: Users of the Android applications are randomly assigned to two groups.
While group A uses the old text-based recommender system with the morelike: query
prefix and group B uses CPA recommendations with the citolytics: query prefix.
Then, the user behavior (clicks and views) and the corresponding group assignment
is track with the Wikipedia EventLogging system.

Recommendation Scenario When studying the effectiveness of recommender
system, is it of importance to keep the reason, why the recommendation system is
integrated into an application, in mind. Therefore, the scenario, in which the users
of the Android app interact with the recommendations, should be defined. We define
this scenario as follows:

The “Read more” feature, which is used to expose the recommendations to the
users, is implicitly geared towards readers who are in “deep dive” mode. In other
words, we assume that the users are reading for detail, not skimming or checking on
a quick fact, when they scroll down to the very bottom of the page. Accordingly, we
expected that a relevant recommendations will lead to further reading of the recom-
mended article. With this regard we aim to evaluate the recommender system. This
recommendation scenario goes along with the definition by Wikimedia Research]

4.8 Online Evaluation with Android App

After describing how recommendations are presented in the Wikipedia Android app,
we define in this section the methodology of the online evaluation, which has the
goal of comparing CPA and MLT based on user feedback from the app. We explain

Ohttps://meta.wikimedia.org/wiki/Research:Evaluating RelatedArticles_
recommendations
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how participants are recruited for the lab study and how user data is collected and
evaluated. Moreover, we discuss the challenges of performing a real-world study.

4.8.1 Lab study

With a lab study we evaluated the performance of CPA and MLT, whereby we used
our own test system and explicitly asked users to participate in our study.

Method To collect user feedback that then can use to evaluate the performance
of CPA and MLT, we create a custom version of the Wikipedia Android app (Sec-
tion . Our app version is identical to the original Wikipedia app except that
in the back end the app is connected to our server not Wikipedia’s. This allows us
to compare the recommendations without requiring the Wikipedia production de-
ployment. Recommendations are analyzed with an A/B testing procedure as it is
common for this kind of research [12] [3]. One user group is exposed to CPA rec-
ommendations, while the other groups to MLT recommendations. Moreover, we can
directly collect the user behavior data that is needed for our evaluation. With this
evaluation approach we aim to compare the recommender systems in a quantitative
manner. At the same time the lab study acts as proof of concept for a future real-
world evaluation with the productive system. As explained in Section [2.2] we chose
simple English and German as available languages.

EventLogging For the purpose of our lab study, we do not copy the whole EL
infrastructure, since the limited number of users does not require high scalability.
Instead, we configure a web server such that it accepts the EL requests and writes
the event data in a log file on disk. In an additional step, the log files are then
processed and written to a database which is used for evaluation. The complete lab
study setup is bundled as Docker container and publicly available on GitHubE].

Recruitment To recruit participants for the online evaluation, we created a single-
page Website[T_Z], where we explained the background of the research and how to install
the app. Additionally, we gave explicit instructions how to participate: We asked the
users ‘“to install the app, browse five to ten articles and click on recommendations
if there are any relevant”. Then, the recruitment website was advertised through

Hhttp://github.com/mschwarzer/citolytics-docker
Znttp://bit.ly/citolytics
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various channels. It was sent to friends and colleagues, promoted on Twitter and
related mailing lists. A screenshot of the website and the call-for-participation text
can be found in the appendix. We set the goal to recruit at least 50 participants for
each language version.

4.8.2 Real-world study

An online evaluation within a real-world application has the advantage that the user
feedback is unlikely to be biased by the fact that users are aware of taking part in a
study. Also, larger amounts of feedback can be collected. Yet, such study requires
access to a real-world application. Therefore, we could not conduct a real-world study
with the Wikipedia Android app, since the Wikimedia Foundation did not allow the
deployment to their productive system. Even if the project had the support from
Wikipedia developers and researchers, it did not receive the essential approval by
the responsible product manager. The product manager argued that the deployment
would cost additional resources while it’s not clear whether it is beneficial. Moreover,
recommender systems are not a high priority topic for Wikipedia.

For a non-profit organization such as Wikipedia the cost argument is crucial and
cannot be easily encountered. On the other hand the problem that the implementa-
tion of a new feature such as an improved recommender system can never guarantee
success is some kind of chicken-egg-problem, which probably most organizations face.
A new feature can only be truly tested in a productive environment, i.e. via online
evaluation. Offline evaluation and user-study can only provide hints about the per-
formance of a new feature (Section . However, product managers expect evidence
before deploying a new feature, since their task is it to ensure the quality of the sys-
tem. As we heard from Wikipedia researchers this issue often determines their work.
In general, we can only think about one solution: An additional testing or beta
system that runs in parallel to the productive system and that allows the testing of
new features before exposing them to the majority of the users. The testing system
would be only available to a small group of users such that an unsuccessful feature
would not risk the success of the whole website. A testing system like this currently
does not exist at Wikipedia.

Discussion With this chapter we presented the steps that are needed to develop
CPA from a research prototype to a production recommender system. Moreover, we
derived improvements of the CPI model and technical requirements for the evalua-
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tion. With the Wikipedia Android app we introduced our approach for evaluating
the CPA-based recommender system in an online evaluation. Next, we present the
results of our evaluation.
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Chapter 5

Evaluation

In this chapter, we present the evaluation results of this thesis. We show the runtime
optimization of the recommendation generation job, state the best parameters for
the CPI model, analyze sample recommendations from MLT and CPA, and evaluate
the user feedback collected in the online experiment.

5.1 Runtime Optimization

A key requirement for a productive system, especially if it has limited resources as
Wikipedia has, is the runtime performance. On the contrary, the prototype from
the preliminary study had only experimental character and, therefore, it was not
optimized regarding the runtime. Hence, we rework the implementation of the CPA
recommender system, whereby we put special focus on the runtime performance. In
the following we describe which steps led to a significant decrease in runtime.

The bottleneck for distributed computing is usually the network. Sending data
from on nodes to another takes a magnitude more time than moving data within
a single node. Thus, minizing network traffic is generally worthwhile in distributed
computing application. The Flink job for recommendation generation has the inter-
mediate results from the link extraction step (Figure[t.2] step 1) that are in particular
performance critical because they are sent over the network. The theoretical uncom-
pressed output of this step consists of 37 billion records that are approx. 32 TB in
size (for English Wikipedia).

In the preliminary implementation a groupReduce operator, which corresponds
to the summation of the CPI formula (Equation , was applied on the mapper
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Table 5.1: Results of runtime optimization. We achieved a significant decrease in
runtime of Apache Flink recommendation generation job.

Job configuration ‘ Nodes | Avg. runtime
No optimization (before thesis) 10 7h 45m
Optimization 8 2h 10m
Optimization (additional features) 5 3h 15m

output. But the groupReduce operator requires all grouped records to be available
on one machine before its execution, which turned out to be a bottleneck. Hence, we
replace the groupReduce with a simple reduce operator that allows execution even
if not all group records are available. Therefore, the network traffic is minimized.
Additionally, we specified the CombineHint of the reduce operator to be hash-based
instead of sort-based, which was automatically suggested by the Flink optimizer.

Replacing the coGroup operator that was used for redirect resolution with a left-
OuterJoin operator led to a further decrease in runtime (Figure , step 3). The
redirect resolution was already in the preliminary implentation designed as leftOuter-
Join operator. However, at the time of the first implementation the leftOuterJoin
operator was not available in Flink and therefore a work-around with a coGroup
operator was necessary.

Aside the optimization of the Flink abstractions, we also analyzed the second
order functions with the Java Mission Control profiler. But we did not find any
essential performance issues, since the second order functions are relatively simple,
i.e. they use mainly Java primitives.

As result, these modifications led to a significant decrease in runtime. The average
results of the runtime optimization are reported in Table 5.1l An additional leftJoin
operator that is necessary for the computation of the Inverse Link Frequency factor
(Section is responsible for a longer runtime, i.e. it corresponds to the additional
features (third row in Table . The experiment was performed on a cluster of
10 IBM Power 730 (8231-E2B) servers. Each machine had 2x3.7 GHz POWER?7
processors with 6 cores (12 cores in total), 2 x 73.4 GB 15K RPM SAS SFF Disk
Drive, 4 x 600 GB 10K RPM SAS SFF Disk Drive and 64 GB of RAM. Due to
hardware failures our final performance optimizations could not be tested with all
ten cluster nodes.
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5.2 Offine Evaluation

In the following we present the results of our offline evaluation that aims to find the
best CPI model parameters, whereby the evaluation is separated in two optimization
steps. First different proximity definitions and a-values are tested. Subsequently,
we determine the best Inverse Link Frequency schema based on the results from the
first optimization step.

5.2.1 Proximity Definition & a-value

From our preliminary study with the English Wikipedia we already know that the
best a-value lies between 0 and 2. Therefore, we compute our objective function for
a series of a-values in this range and with absolute and relative proximity. Addition-
ally, the objective function (Equation is computed for structure proximity. To
visualize the effect of the two investigated Wikipedia language, the objective function
scores are displayed in Figure for simple English in red and for German in blue.

Independent from the language, the best results are achieved with o = 0.9 and ab-
solute proximity. Moreover, we can assume the global maximum to be near e = 0.9,
since the plot shows a bell-shaped curve. For higher or lower a-values the objec-
tive function is decreasing. Regarding the proximity definition, absolute proximity
outperforms relative and structure proximity. However, such an outcome was un-
expected. It is astonishing that the best model parameter are identical for German
and simple English. We would have expected that corpora of different sizes and
different article properties (Section lead to different model parameter, especially
a different a-value. We must also note that @ = 0.9 is close to the best a-value from
the previous study with the even bigger English corpus [39] where the optimized CPI
model used o = 0.855. It is as well unexpected that absolute proximity performs
best, since relative proximity is convincingly theoretical justified with the different
length of Wikipedia articles.

Nonetheless, best model parameters, which are independent from the corpus prop-
erties, are very much appreciated from a practical point of view. A recommender
system that does not require optimization of model parameters is easier to use. In
other words, it is out-of-the-box employable.

Aside the identical best model parameters, Figure [5.1] shows that CPA generally
performs better with German than with simple English. This outcome, however,
was expected. The German corpus is generally “bigger” than the simple English
corpus. German has much more articles (2 million compared to 122,000 simple
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Figure 5.2: Objective function (offline performance) for simple English and German
Wikipedia with different ILF weighting schema (no IDF=plain CPI). Best result of
the objective function is achieved with Okapi BM25.

English articles) and more links connected the article with each other. Consequently,

CPA has more information to work with and, therefore, is more likely to deliver better
recommendations.

5.2.2 Inverse Link Frequency

To find out whether ILF improves the performance and which ILF schema per-
forms best, we evaluate our objective function with the parameters discussed in
Section [4.6.1] The results are shown in Figure

In contrast to Beel et al. [4], the evaluation shows that ILF has a positive effect
for our Wikipedia use case. All ILF weighting schemes perform better than the plain
CPI, while the Okapi BM25 schema achieves the best result. Similar to Figure[5.1] the
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result is again independent from the corpus. For both simple English and German,
Okapi BM25 is the best ILF schema. Yet, we see that the relative performance
difference among the ILF schema is stronger for German. We assume that this is
caused by the wider distribution of in-links for German articles (Figure . In the
German Wikipedia there are a magnitude more article without any in-links and at
the same time the most linked article has ten times more links than the most linked
article from simple English Wikipedia.

Discussion In conclusion, we derive from this evaluation the following equation as
best and final CPI model:

DI

‘ _ D|—n,+05
CPI(a,b) = Y A (,5)7% x log <| ’n 104‘5 ) (5.1)

j=1

The final CPI is used for generating the recommendations for the manual analysis
and the online evaluation (Section [4.8.1)). Due to the use of the in-links n,, the CPI
is no longer bidirectional. Instead, CPI defines the ranking of article a being a
recommendation for article b.

5.3 Sample Evaluation

Before evaluating user feedback on CPA and MLT recommendations, we first manu-
ally analyze recommendations of four sample articles for each language. The sample
articles were chosen for their diversity and comprehensibility. The chosen articles
were available in simple English and German:

The sample articles and their properties are presented in Table [5.2] “Technical
University Berlin{|f]is the article about the authors home university. “Newspaper‘fff]
explains the frequently printed publication. “Brad Pitt”E}E] is about the famous Hol-
lywood actor. “Einstein field equations'{]f] is a niche article on equations derived

1https://simple.wikipedia.org/wiki/Technical_University_of_Berlin
’https://de.wikipedia.org/wiki/Technische_Universitat_Berlin
3https://simple.wikipedia.org/wiki/Newspaper
‘https://de.wikipedia.org/wiki/Zeitung
Shttps://simple.wikipedia.org/wiki/Brad_Pitt
Shttps://de.wikipedia.org/wiki/Brad_Pitt
"https://simple.wikipedia.org/wiki/Einstein_field_equations
8https://de.wikipedia.org/wiki/Einsteinsche_Feldgleichungen
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Article ‘ Wiki ‘ Size ‘ Edits ‘ Page views
Technical University of Berlin simple | 1,975 4 182
Technische Universitiat Berlin de 55,702 24 65,136
Newspaper simple | 1,450 2 46,981
Zeitung de 17,006 51 65,136
Brad Pitt simple | 4,104 11 4,949
Brad Pitt de 28,845 12 688,346
Einstein field equations simple | 1,293 4 3,069
Einsteinsche Feldgleichungen de 10,987 23 30,695

Table 5.2: Properties of sample articles from simple English (first row) and German
(second row). Size is measured in character count of article content. Page views and
edit count from November 2016 until October 2017.

from Albert Einstein’s general theory of relativity. The top-3 recommendations sets
of the four articles are shown in Tables 5.3 (simple English) and [5.4] (German).

In contrast to the manual analysis in [39], where we found obvious differences in
the recommendations of CPA and MLT, here we hardly see any difference between the
recommendations. In general, we consider most recommendations relevant, whereby
both recommender systems perform better with German than simple English. For
instance, you can possibly argue that the simple English recommendations “Cottbus”
and “Bionics” for “Technical University Berlin” are irrelevant. On the other hand, we
do not see any none irrelevant German recommendations. A problem we found in
[39] was that MLT tends to recommend irrelevant niche articles and CPA tends to
recommend too general articles. From the four samples we see that these issues has
been resolved by our adapted version. Wikipedia’s MLT modification of adding a
popularity score removes niche articles, while the novel IFL factor of CPA penalizes
too general articles. Looking at the simple English recommendations of “Brad Pitt”,
you can even argue that MLT with popularity score now recommends too general
articles. While “Angelina Jolie” is a relevant recommendations, “Movie” and “1975”
lack a direct connection to Brad Pitt. On the contrary, CPA also provides stable
recommendations for “Brad Pitt” by recommending either actors who worked with
him (“Casey Affleck” and “Eric Bana”) or characters who he played (“Jesse James”).
But given the fact that this issue is only visible in one of eight samples, we cannot
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’ Rank ‘ MLT recommendation

CPA recommendation

Seed | Technical University of Berlin
1 Charlottenburg-Wilmersdorf Darmstadt Uni. of Technology
2 Berlin Bionics
3 Cottbus Dresden University of Technology
Seed | Newspaper
1 Magazine Magazine
2 Movie Editor
3 Book Tabloid
Seed | Brad Pitt
1 Angelina Jolie Casey Affleck
2 Movie Jesse James
3 1975 Eric Bana
Seed | Finstein field equations
1 Sphere Momentum
2 Photon Matter
3 Maxwell’s equations Energy

Table 5.3: Sample recommendations from simple English by MoreLikeThis (left) and

Co-Citation Proximity Analysis (right).

state that this is a general problem of MLT with popularity score.

Discussion All in all, the manual analysis showed that both recommender systems
perform generally well and the tiny differences that we found cannot be generalized.

Hence, we cannot derive from this analysis whether CPA or MLT is superior.

5.4 Online Evaluation

After optimizing CPI in an offline evaluation, we present in this section the results
of our online evaluation, which has been conducted with the Wikipedia Android app

in a lab study.
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’ Rank ‘ MLT recommendation

CPA recommendation

Seed | Technische Universitit Berlin
1 Technische Universitét Freie Universitéit Berlin
2 Technische Universitdt Dresden Technische Universitdt Miinchen
3 Technische Uni. Braunschweig Berlin
Seed | Zeitung
1 Tageszeitung Zeitschrift
2 The Independent Buch
3 Stuttgarter Zeitung Fernsehen
Seed | Brad Pitt
1 Angelina Jolie Angelina Jonie
2 Oscarverleihung 2012 George Clooney
3 Michael Fassbender Die Kunst zu gewinnen - Moneyball
Seed | Finsteinsche Feldgleichungen
1 Allgemeine Relativitédtstheorie Allgemeine Relativitédtstheorie
2 Raumzeit Vakuumlosung
3 Vierervektor Kosmologische Konstante

Table 5.4: Sample recommendations from German by MoreLikeThis (left) and Co-
Citation Proximity Analysis (right).

5.4.1 Participants

Participants for our lab study have been mainly recruited through our lab study
website. The experiment data has been collected in the period from Mid of August
until beginning of October 2017. Yet, the number of participants turned out to be far
below our expectations. Even if the website attracted visitors from various countries
with the majority coming from Germany and Japan, we achieved in total only 114
views and 79 visitors (Table . For web tracking we rely on Google Analyticsﬂ

In total 33 users installed our app (simple English: 15 users, German: 18 users)
resulting in an install-rate of 41.7%.

9http://www.google.com/analytics
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Table 5.5: Number of views and visitors by country on lab study website. Top 10
countries are displayed. In total 114 views and 79 visitors.

Country Views | Visitors
Germany 57 39
Japan 39 25
Austira 2 2
Switzerland 2 1
United Kingdom 2 1
Indonesia 2 2
Italy 2 2
Thailand 2 2
Hong Kong 1 1
India 1 1

5.4.2 Lab study results

With a total number of 33 participants we did not achieve a statistically significant
outcome that prove that either CPA or MLT is the superior recommender system in
terms of clicks. Also, regarding the user behavior we could not find any significant
difference between CPA and MLT.

The majority of events has been collected in the first third of the study time
range (Figure . This can be explained by that most users directly responded to
our call for participation by installing the app and using it once or twice. Only a
few users used the app more than two times. One reason for this might be that the
app was promoted as research subject. So the users did not adopt the app as default
way to access Wikipedia content because they were aware of its research purpose.

Aside the app usage, the overall performance of CPA and MLT is of more impor-
tance (Table . Surprisingly, both recommender systems have independent from
the language nearly the exact same CTR (approx. 12%). While the absolute num-
ber of views and clicks differ. German CPA is used most (648 views and 83 clicks).
German MLT has the lowest number of interactions (198 views and 25 clicks). For
simple English the views and clicks are on the same level (approx. 300 views and 38
clicks). As a result the CTR of CPA and MLT for simple English and German show
no difference that is statistically significant at level of 5% with psimpiengiisn = 0.8163
and Pgerman = 0.9594.
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Figure 5.3: Number of collected events (user-study data points) from Android app
(simple English) during the user-study from August to October 2017.

For Long Clicks and Long CTR we see a similar outcome. Despite that for
German there is an advantage for CPA with a Long CTR of 6.02%, whereas MLT
has a Long CTR of 3.03%. However, this difference is also not statistically significant.
On the other hand, the average time spent on an recommended article differs largely
for simple English (CPA 26s and MLT 46s), whereas for German the time spent the
difference is little (CPA 35s and MLT 32s).

We can state that a CTR of 12% is high but realistic. The recommendations
are displayed at the very bottom of the article page (Section @ and, therefore,
from a lower CTR would be expected from the user interface point of view. Yet, we
assume the click rate to be realistic, because Wikipedia Research observed with 16%
a similar high CTR in a similar experimenﬂ.

Despite the click rate, we assume that our call for participation, in which we ex-
plicitly ask to click on the recommendations, led to this unrealistic reading behavior.
The measurements of time spent and max. viewed are too high: An average max.
viewed of 99% is not realistic, especially when also taking the avg. time spent of
26 seconds into account. A user simply does not read (or scan) a whole Wikipedia

Ohttps://www.mediawiki.org/wiki/Reading/Web/Projects/Related_pages
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article in 26 seconds on average.

Table 5.6: Overall performance measures per recommender system. CPA and MLT
perform similarly well. Performs show no statistical significant difference.

’ ‘ stmple English ‘ German ‘
| | CPA| MLT | CPA | MLT |
App Installs 15 18
Views 288 318 648 198
Clicks 37 39 83 25
CTR (%) 12.8 123 ] 12.8| 126
Long Clicks 16 19 39 6
Long CTR (%) 5.5 6.0 6.0 3.0
avg. Time Spent (s) 26.1 46.0 | 359 | 323
avg. Max. Viewed (%) | 99.8 97.8 | 98.3 | 923

The overall performance measures do not reveal a difference in CPA and MLT. For
more insights, we continue with a look at the most recommended (viewed) or clicked
recommendations (Table and [.8). As expected, “United States” is the most
recommended article for simple English CPA. We expected “United States” to be in
the top-5, because CPA’s tendency to favor articles with a high number of in-links
and “United States” is the article with most in-links. However, it is surprising that
“United States” is with distance the most recommended article and that the tendency
is visible at such a small sample size. Given that the introduction of the IFL factor
was supposed to reduce the in-link bias, this outcome is even more suprising.

Table 5.7: Top-5 viewed recommendations per source. (# = views)

simple English German
CPA # MLT # CPA # MLT #
1 | Unitied States 14 | Airship 7 || Mango 8 | Gasoline 8
2 | God 9 | Refraction | 6 || Mais 8 | Obersee (Bodensee) 7
3 | Moses 9 | Telescope 6 || Mustererkennung | 6 | Alternative fuel vehicle 6
4 | Jesus 8 | Judaism 5 || Bohne 6 | Munchausen syndrome 5
5 | United Kingdom 7 | Singing 5 || Weizen 6 | Osterreichischer Rundfunk | 4

Moreover, it is also notable that religious (simple English: God, Moses, Jesus)
and food-related articles (German: Mango, Mais, Bohne, Weizen) are frequently
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recommended. We assume that this outcome can be explained by single users who
extensively browsed articles from a particular topic and the small sample size that
did not balance the effect of those single users. With a larger sample size we would
expect more diverse topics or topics that are generally popular among Wikipedia
users like celebritied")] The recommendations by MLT do not show any kind of bias.
We cannot state whether this is because of an conceptional advantage or just random.

When analyzing the most clicked recommendations, the small sample size problem
is even more obvious. None of the most clicked recommendations has more than two
clicks. Giving a statement on any differences of CPA and MLT is with this small
sample impossible.

Table 5.8: Top-5 clicked recommendation per source. (# = clicks)

simple English German
CPA # MLT # CPA # MLT +#
1 | United States 2 | Brandenburg Gate 2 || Mais 2 | Bodensee 2
2 | Torah 2 | Photography 2 || Bohne 2 | Uberlinger See 2
3 | London 2 | Soprano 1 || Berlin 2 | ORF 2 1
4 | The Guardian 2 | Bible 1 || Hamburger SV | 1 | Gas station 1
5 | Old Testament | 1 | Montpeller, Indiana | 1 || Deutschland 1 | Deutscher Handballbund | 1

An often discussed design decision of recommender systems is the specification of
k, i.e. how many recommendations should be presented to the user. Wikipedia chose
to provide the top-3 recommendations in the Android app. The design decision is
driven by the assumption that user attention decreases as the rank of a recommen-
dation decreases because the user’s eye movement is usually from top to bottom. Put
differently, the recommender system should rank the most relevant recommendation
at the top. This expectation is reflected by rank-based performance measures like
MAP (Section [2.9).

Consequently, we would expect that in our data we find top recommendations
receive the most clicks (Table [5.9). However, this is not the case. Independent from
recommender system or Wikipedia language, number of clicks does not decrease
with decreasing rank. With simple English, for instance, the most clicks are received
by the third not the first ranked recommendations. For MLT’s simple English re-
commendation the outcome is even the opposite of what would be generally expected.
The clicks increase as the rank decreases. Having such an outcome, brings up the
question whether the use MAP as performance measure is valid for this use case or if

Uhttps://en.wikipedia.org/wiki/Wikipedia:Top_25_Report
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Table 5.9: Clicks per recommendation rank and source.

] \ stmple English \ German \
| |[CPA| MLT |CPA | MLT |
1 11 11 33 11
2 8 13 19 11
3 18 15 31 3

rank-independent measures such as CTR are more likely to be suitable. With regard
to the small sample size, we cannot provide an answer to this question. Nonetheless,
we hypothesize that the low value of k = 3 is responsible for this outcome and that
a higher value of k£ would lead to different outcome.

Due to the low number of participants, a more detailed evaluation of article
properties (length, topics, etc.) that was planned for the real-world study has not
been performed with the lab study data.

Discussion Given these evaluation results, we can state that CPA and MLT are
both similar well suited as Wikipedia recommender system. Also, the similar per-
formance for simple English and German shows that the corpus does not affect the
outcome of the comparison. A similar results can be therefore expected for other
Wikipedia languages. Furthermore, the result of the online evaluation does not only
allow a statement on CPA and MLT, it also shows the validity of the offline evalua-
tion with “See also” links and click streams. Both offline and online evaluation led
to the same result. With the help of the quasi-gold standards the offline evaluation
predicted the results of the online evaluation.
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Chapter 6

Conclusion

In this chapter, we summarize our findings, draw conclusions and propose areas of
future work.

6.1 Summary

The contribution of this work consists of mainly two parts: First, the development of
CPA from a research prototype to a large-scale production Wikipedia recommender
system. The development includes an increased efficiency of the Apache Flink job, the
integration into Wikipedia’s back and front end, and the conceptional improvement
of the CPI model. Second, the comparison of CPA and MLT with a manual analysis
and an online evaluation that is based on real user feedback.

Development of a Large-Scale Recommender System One major element
of the implementation work was the development of an efficient Apache Flink job,
which generates the recommendations from a Wikipedia XML dump. The job was
optimized with respect to the runtime performance and scalability. To be precise,
we achieved a decrease in runtime from 4:45h to only 2:10h while consuming less
computing power. At the same time, we added additional features that now allow
a more complex CPI computation, e.g. including IFL factor. These modifications
increase the efficiency and quality of the link-based recommendations. For the de-
ployment as Wikipedia recommender system, several components of the Wikipedia
infrastructure have been modified. We integrated the link-based recommendations
into Wikipedia’s MediaWiki/CirrusSearch API in such way that recommendations
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are loaded from Elasticsearch and made accessible to the Android app. We added to
the Android app an A /B testing mechanism that shows either CPA- or MLT-based
recommendations to randomly assigned user groups. For the frequent and automatic
generation of recommendations we added a procedure to Wikipedia’s existing Apache
Oozie setup. The Oozie procedure runs the Apache Flink job in a YARN environment
and populates the results into Elasticsearch. In addition, we developed an approach
to read user data, which Wikipedia’s EventLogging system collects, and to analyze
it in an separate database. As a result of this work, the CPA-based recommender
system is capable of being deployed to Wikipedia’s production environment. The
developed system is scalable to provide recommendations to several million Wiki-
pedia users. Moreover, it would allow a large-scale online evaluation. Parts of our
development are already presented in a separate publication [3§].

Evaluation of a Large-Scale Recommender System Secondly, we contributed
the evaluation of the link-based CPA as Wikipedia recommender system in compari-
son to the text-based MLT. With offline evaluations we tested three different methods
of quantifying the co-link proximity and found that the plain number of words be-
tween links (absolute proximity) works best. We also showed that the introduction
of an Inverse Link Frequency (ILF) factor leads to a further improvement of CPA. In
particular, the IFL factor, which we derived from the concept of TF-IDF, decreases
CPA’s tendency of recommending too general articles. For the offline evaluation
we used Wikipedia’s click stream and “See also” links data as quasi-gold standards,
whereby we added multi language support to increase each gold standard’s cover-
age. In addition, we found that recommendations generated from edit logs are not
suitable as gold standard for evaluating a Wikipedia recommender system.

The main objective of this thesis was the evaluation of CPA and MLT in an online
scenario. In particular, we used the Wikipedia Android app for the evaluation. We
performed a lab study with 33 participants in total. The study’s outcome presented
no significant difference of CPA and MLT. Both recommender systems performed
similarly well with respect to our performance measures. The metrics CTR and
Long CTR, but also time spent and percentage viewed, have been used to assess
the recommendations. Given that we evaluated the user behavior in a lab study, we
consider our findings as representative, because a similar study conducted by Wiki-
pedia Research resulted in a similar click rate on recommendations. Furthermore,
our evaluation proves the language independence of CPA, since similar results for
simple English and German have been achieved. Despite the successful lab study,
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the real-world online evaluation with the Wikipedia audience could not be conducted
as part of this thesis due to missing support from the Wikimedia Foundation.
Aside the offline and online evaluation, we as well analyzed manually recommen-
dations samples of CPA and MLT. In the manual analysis we did not find any major
differences of CPA and MLT, too. Thus, these results are in accordance with the
online evaluation. Additionally, we can state from the samples that the IFL factor
for CPA and the popularity factor, which has been added to MLT by Wikipedia,
solve issues of both recommender system that we address in our first study [39).

6.2 Conclusion

We started this thesis with the question whether CPA is suitable of being deployed to
a large-scale production environment such as Wikipedia. Given our implementation
work and the feedback from Wikipedia’s developers, we can confirm CPA’s suitability.
Even if the final deployment to Wikipedia’s production system failed due to lack of
support by Wikipedia’s product management team, we prove CPA’s practical use in
a test system setup that was used in our lab study.

In preparation for the online evaluation, we developed and tested the IFL factor
for CPA. The ILF factor increased the recommendation quality without using any
additional data sources. ILF uses only links and is, therefore, only content-based. On
the contrary, the popularity score improvement of MLT requires information on the
number of clicks on an article. Put differently, Wikipedia’s MLT version is in contrast
to the original MLT implementation not only text-based (content-based), instead
it relies as well on user data. Thus, Wikipedia’s MLT suffers like other user-based
recommender systems from the cold start problem. The cold standard problem refers
to the fact that at the first start of the system, when no user data is available, the
recommender system cannot work properly. Transfered to Wikipedia, at first enough
user data needs to be collected to compute popularity scores. Even if the ILF factor
represents an improvement of CPA for the Wikipedia use case, it is questionable
if IFL has the same effect on other document types. We doubt that the concept
can be directly transfered to CPA’s original domain, scientific publications, because
Wikipedia articles tend to have generally more in-links than scientific publications
have citations. A different weighting schema is probably required.

In the evaluation part of this thesis, the objective was to compare CPA and MLT
in an online evaluation. From the outcome of the lab study we cannot derive a
statement on the superiority of CPA or MLT. Both recommender systems perform
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equivalent. Thus, the corresponding research questions remains unanswered. How-
ever, CPA and MLT are conceptional different even if the online evaluation did not
reveal a significant difference. From the few samples of the manual analysis we ob-
served already tiny differences. Therefore, we argue that the identical performance
is merely caused by the low number of participants. If more data would have been
collected in the lab study, the differences between CPA and MLT would be visible.
An other reason for the indifference might be that the data does not originate from a
real-world application, i.e. the users were aware of taking part in a study. Hence, we
cannot give a final answer to our research question that was whether CPA or MLT
performs better. But we expect a future large-scale online evaluation to answer this
question. However, we can draw additional conclusions: The results for simple En-
glish and German are similar. The Wikipedia language does not affect the outcome.
Other languages would most probably result in similar outcomes. Consequently, our
findings are generalizable if the corpus consists of similar with links interconnected
articles. In addition, the outcome of the online evaluation also shows the validity of
the offline evaluation. Given that the offline evaluation predicted the online evalua-
tion, we no longer need to refer to “See also” links and click streams as quasi-gold
standards. The online evaluation proved their use. Thus, we declare “See also” links
and click streams as valid gold standards.

6.3 Future Work

The development and evaluation of CPA as Wikipedia recommender system leads to
additional research questions that we propose in the following. We distinguish the
future work in two areas: Evaluation and further improvements of CPA.

6.3.1 Evaluation

The evaluation part of the thesis did not reveal any significant difference of CPA
and MLT. So the question of which recommender system is superior remains. Hence,
in the future additional evaluation work is needed. CPA is ready to be deployed
at Wikipedia. Thus, it is feasible to conduct a real-world study in the near future.
Furthermore, the possible outcome of a large-scale online evaluation is promising in
multiple ways. On one side, the real-world study is expected to deliver a judgment
on the performance of the two recommender systems. With a larger amount of
evaluation data differences in the performance should easier to identify. On the
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other side, the collected evaluation data could be used by other researchers, because
the data does not come from a private owned live system. If Wikipedia does not
allow a deployment, we also see other websites that run with the MediaWiki software
as potential platforms for an online evaluation. But integrating CPA into another
infrastructure would require additional work. Moreover, another website, especially
if it is private owned, would not offer the same level of openness and reproducibility
as Wikipedia. Therefore, websites that rely on the same technologies as Wikipedia
and have similar encyclopedic content with interconnecting links are most qualified
for such an approach.

Aside the online evaluation, a qualitative user study could also provide detailed
insights on CPA and MLT. In questionnaires or interviews subjects can be ask to iden-
tify the conceptional differences of the CPA and MLT recommendations. Findings
of such study would also allow a further improvement of the recommender systems.

6.3.2 CPA Improvements

In this work we successfully showed how to improve CPA. However, we propose to
further extend the idea of CPA.

CPA uses co-links or co-citations. But the concept can be also transfered to other
domains or to more abstract relations. For instance, CPA could be also applied
on references in patent descriptions to find related patents. Or if CPA’s ideas is
understood in a more abstract or broader sense, relations could be also extracted
using words or entities. In Wikipedia, for example, usually only the first appearance
of a term is linked to its article. To get more co-links, a preprocessing step could add
links to all the later appearances of linked terms. As we saw by comparing simple
English and German, more links lead to better results. Therefore, we assume that
creating additional links would improve CPA. Likewise, an approach like this can be
also applied on named entities that are not connected to any article in the corpus. As
a result, CPA would be also useful for non-encyclopedic corpora like news content,
which often does not contain interconnecting links.

Lastly, we suggest to redesign CPA in such way that it uses streaming instead of
batch processing. Right now, the whole Wikipedia dump needs to be processed to
provide updated recommendations when Wikipedia’s content changes. This creates
an overhead, which should be avoided in a production environment. Given a data
set that contains only the changes, CPA recommendations can be computed with a
more efficient streaming approach if the implementation is adjusted accordingly.
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Appendix A: Abbreviations

e.g.
i.e.

I/0
CoCit
CPA
CPI
CSV
CTR
ES

EL
HDF'S
IR
MAP
MLT
TF-IDF
VSM
RS
XML

exempli gratia

id est

Input / Output

Co-Citation

Co-Citation Proximity Analysis
Co-Citation Proximity Index
Comma-separated Values
Click-Trough-Rate

Elasticsearch

EventLogging

Hadoop Distributed File System
Information Retrieval

Mean Average Precision
MoreLikeThis

Term Frequency - Inverse Document Frequency
Vector Space Model
Recommender System
Extensible Markup Language
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Appendix B: EventLogging Schema

The user data for our evaluation has been collected with Wikipedia’s EventLogging
system (Section . The EventLogging system works with pre-defined schema that
define which data is collected. These logging schema are presented in the following
tables:

MobileWikiAppArticleSuggestions
Track when the user views or interacts with the “read more” suggestions
at the bottom of the current article.

action (String) Which user action triggered this event: “shown” is
used when the,suggestions are first shown to the
user, and “clicked” is used when the,user clicks one
of the suggestions.

applnstalllD ApplnstallID that’s unique to each app install and
(String) is used to track user across this and other features
in the mobile app

pageTitle (String) Title of the page currently being viewed
readMoreList List of page suggestions displayed to the user (sep-
(String) arated by a pipe symbol)

readMorelndex (Int) | Index of the suggested page that was clicked (only
used with action=clicked)

readMoreSource The source of the Read More suggestion list.
(Int)
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MobileWikiAppSessions
Track user behavior during a session of using the app.

length (Integer)

The length of this session, in seconds.

applnstalllD
(String)

ApplnstallID that’s unique to each app install and
is used to track user across this and other features
in the mobile app

totalPages (Int)

Number of total pages viewed during this session.

fromSearch (Int)

Number of pages viewed that came from the Search
bar.

fromInternal (Int)

Number of pages viewed that came from tapping
regular internal links on a page.

fromExternal (Int)

Number of pages viewed that came from external
links (e.g. from the Browser app).

MobileWikiAppPageScroll
Measure how much of the page the user scrolls through.

pagelD (Integer)

The ID of the article to which this event applies.

timeSpent (Integer)

Amount of time, in seconds, that the user spent
reading this page, before leaving the page for any
reason (going to another page, another part of the
app, leaving the app, etc.)

pageHeight (Integer)

The total height of the page, in device-independent

pixels.
maxPercent Viewed The total percent of the page height that was
(Integer) reached.
applnstalllD ApplnstallID that’s unique to each app install and
(String) is used to track user across this and other features

in the mobile app

Appendix C: User Study Website

The following text has been used to promote the participation in our online evalua-

tion:

Dear all,

We are conducting a user-study as part of our research on recommender
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systems. The goal of this study is to evaluate the performance of a novel
Wikipedia recommender system. For that reason we provide a custom
version of the Wikipedia Android app for two languages (simple English
and German). The app is identical to the original Wikipedia app expect
that article recommendations, which can be found at the bottom of each
article in the “Read more” section, are generated differently. To be precise,
the novel approach generates recommendations based on links, whereas
the current approach used by Wikipedia is text-based. For evaluation of
the recommender system we collect data about the user behavior of each
participant. In order to collect sufficient data we kindly ask you to install
the app, browse five to ten articles (use “Explore” feature if you cannot
think about any) and click on recommendations if there are any relevant.

The Android app is available on the following website:
https://mschwarzer.github.io/citolytics-demo/userstudy/
Your effort: 15 minutes.

Procedure: - Download and install Android app - Browse five to ten
articles (use “Explore” feature if you cannot think about any) - Click on
recommendations if there are any relevant

Requirements: - Android phone

Your participation will be a valuable addition to our research and findings
could lead to better recommendations in Wikipedia or other websites.

Thank you in advance.

Best regards, Malte Schwarzer

A screenshot of website where the our Wikipedia Android app could be down-
loaded is shown in Figure [6.1]
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Citolytics

Gt

SCIENTIFIC USER-STUDY:

Wikipedia Recommender
System Evaluation

Thank for your interest in our research. To participate in this
user study we kindly ask you to download and use our
Wikipedia Android app. The app is avaialable in two
languages. In order to install the app you must enable the
"Install from Unknown Sources"-settings (instructions below).

Download App (Simple English)

Download App (German)

What should | do?

« Dowrload the Android App (Simple English
or Germanj)

# Install the Android (enable “Unknown
Sources” if needed)

« Browse 5-10 articles fuse the Explore or
Randomizer feature if you cannot think
about any articles)

® Click on recommendations if there are amy
relevant.

Your effort: ~15 minutes.

How to Enable "Unknown Sources” in
Android to Install Apps Outside the
Play Store

Enabiling this function is a piece of cake: Simply go
to Settings - Security.

What is the purpose of this research?

Recommender systems are a crucial filtering and
discovery tool to manage the vast and
continuously increasing volume of information
available on the Web. This research aims to
contribute to the general research on recommender
systems by investigate novel techniques for the
task of recommending Wikipedia arficles. Working
with Wikipedia data has several unique
advantages. First, the availsbility of a very lange
and diverse text corpus. Second, the openness of
Wikipediz's architecture allows making our source
code and evaluation data public, thus benefiting
other researchers. Moreover, this user study can
Ibe considered as proof-as-concept of the Chiolytics
recommender system.

What data is collected?

Figure 6.1: Screenshot of the user study website.

5




	Introduction
	Motivation
	Objective
	Thesis Structure

	Background
	Problem Description
	Wikipedia
	Co-Citation Proximity Analysis
	Term Frequency - Inverse Document Frequency
	Elasticsearch
	MediaWiki
	Apache Hadoop & Flink
	Apache Oozie
	Performance Measures

	Related Work
	Preliminary Study
	Recommender System Evaluations
	Effect of Co-Citation Proximity

	Approach
	System Overview
	Apache Flink Job for Link-based Recommendation Generation
	CirrusSearch Integration
	Apache Ooozie Integration
	EventLogging
	CPI Optimization
	Wikipedia Android App
	Online Evaluation with Android App

	Evaluation
	Runtime Optimization
	Offline Evaluation
	Sample Evaluation
	Online Evaluation

	Conclusion
	Summary
	Conclusion
	Future Work

	Bibliography
	Appendices
	Appendix A: Abbreviations
	Appendix B: EventLogging Schema
	Appendix C: User Study Website


