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ABSTRACT
Passage ordering aims to maximise discourse coherence in doc-
ument generation or document modification tasks such as sum-
marisation or storytelling. This paper extends the passage ordering
task from sentences to paragraphs, i. e., passages with multiple sen-
tences. Increasing the passage length increases the task’s difficulty.
To account for this, we propose the combination of a pre-trained
encoder-decoder Transformer model, namely BART, with varia-
tions of pointer networks. We empirically evaluate the proposed
models for sentence and paragraph ordering. Our best model out-
performs previous state of the art methods by 0.057 Kendall’s Tau
on one of three sentence ordering benchmarks (arXiv, VIST, ROC-
Story). For paragraph ordering, we construct two novel datasets
from Wikipedia and CNN-DailyMail on which we achieve 0.67
and 0.47 Kendall’s Tau. The best model variation utilises multiple
pointer networks in an ensemble-like fashion. We hypothesise that
the use of multiple pointers better reflects the multitude of possible
orders of paragraphs in more complex texts. Our code, data, and
models are publicly available1.
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1 INTRODUCTION
Under the umbrella of a project on document and content curation
technologies [23], we work on methods of automatically select-
ing relevant text segments from multiple documents in order to
reassemble them in meaningful, coherent ways, i. e., generating
coherent stories from heterogeneous sources. To achieve this, af-
ter extracting text segments that relate to the same subject, we
need to order them in such a way as to maximize discourse coher-
ence. Achieving this overall task and vision would result in the
creation of a system able to automate semantic storytelling [24].
The (re)ordering task, also known as passage ordering, is about

1https://github.com/airKlizz/passage-ordering

finding the right or best order of a given set of text passages, e. g.,
sentences, so that their discourse coherence is maximised. The
ability to structure and organise passages in a meaningful way is
closely connected to discourse coherence modeling and a funda-
mental property of language models [17].

Beyond our use case, passage ordering models are used in text
generation tasks such as summarisation for execution and evalua-
tion [1, 16]. Recent ordering approaches [6, 17, 31] utilise a model ar-
chitecture composed of twomajor components: an encoder-decoder
model represents the passages and a pointer network selects the
correct next passage given passage representations. These models
are commonly evaluated on datasets, in which the passages meant
to be ordered are sentences.

In order to match our use case, which is about ordering text seg-
ments of several sentences, i. e., paragraphs, we extend the ordering
task by introducing two new paragraph ordering datasets. The first
dataset, based on news articles from CNN-DailyMail [27], contains
on average more than 14 paragraphs to order. The second dataset
is constructed using Wikipedia and contains long paragraphs of 62
words on average. The dataset based on CNN-DailyMail is char-
acterized in particular by a greater number of passages than the
previous datasets while the one based onWikipedia is differentiated
by longer passages.

The two new datasets increase the task’s difficulty compared to
previous datasets since the greater passage length requires better
modeling of long-range semantic relations within the text. There-
fore, we propose a two-way enhancement of the encoder-decoder-
pointer approach. First, we use a state of the art pre-trained Trans-
former model, BART [15], to replace the previously used encoder-
decoder models. This requires an adaptation of BART to encode
and decode text not only at the word but also at the passage level.
Second, we test and evaluate BART in combination with the pointer
network introduced by Wang and Wan [31] and two variations of
this pointer network, one with more learning capacity and one
using ensemble learning. In addition to our two new datasets, we
empirically evaluate the three proposed models on three common
sentence ordering datasets (arXiv, VIST, ROCStory). In summary,
our main contributions are:

• Creation of two new datasets that extend the passage or-
dering task from sentences to paragraphs, which are more
suited for the creation of “synthesised” documents

• Implementation and evaluation of pre-trained encoder-decoder
Transformers with different pointer networks.

• New state of the art results that considerably outperform
previous results by 13.51% on the sentence ordering datasets
arXiv, VIST, and ROCStory
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The rest of this article is structured as follows. Section 2 presents
work related to passage ordering but also encoder-decoder models,
pointer networks, and ensemble modeling. Section 3 explains the
methodology used with detailed explanations of the three imple-
mented models. Section 4 presents the experiences made with a
presentation of each dataset, including those that we have created,
and a presentation of metrics and baselines. Section 5 presents the
results of the experiments. We discuss the results in Section 6 and
provide concluding remarks in Section 7.

2 RELATEDWORK
2.1 Encoder-decoder models
Encoder-decoders (also known as sequence-to-sequence models)
are used in many other NLP tasks (e. g., translation or summarisa-
tion) including the passage ordering task. Encoder-decoders gen-
erate the output sequence step by step from an input sequence.
The input sequence is used as the encoder’s input and the decoder
input is its output from the previous step. The RNN (Recurrent
Neural Network) encoder-decoder model introduced by Sutskever
et al. [28], improved the results in NLP tasks such as translation.
Bengio and LeCun [3] improved RNN-based models by introducing
attention mechanisms in the decoder part, which addressed the
issue that the performance of simple RNN models decreases as the
input size increases. Pushing the use of attention mechanisms and
intending to facilitate parallelisation of the model, Vaswani et al.
[29] introduced the Transformer architecture, an encoder-decoder
architecture that uses attention without any recurrent elements.
Devlin et al. [7] introduced a Transformer encoder-only model tak-
ing advantage of pre-training. The same idea has been applied to
encoder-decoder Transformer models by Lewis et al. [15] with the
publication of BART, and by Raffel et al. [22] with T5. These two
models established the state of the art when they were published.

2.2 Pointer networks
Plain vanilla encoder-decoder models cannot compute the con-
ditional probability of an output sequence when the number of
possible classes depends on the input. However, this is needed for
the ordering task as the number of classes is the number of pas-
sages to be ordered, i. e., it depends on the input. Vinyals et al. [30]
introduced a novel architecture named pointer networks to address
this issue. Pointer networks are composed of an encoder-decoder
model with an attention layer that computes conditional probabili-
ties depending on the encoder and decoder outputs. The computed
conditional probabilities correspond to positions in the input se-
quence. Pointer networks are therefore suitable for the passage
ordering task. Wang and Wan [31] improved the pointer network
by using a scaled dot-product based attention.

2.3 Passage ordering
Barzilay et al. [1] introduced sentence ordering, attempting to in-
crease the coherence of summaries in multi-document summari-
sation. Lapata [13] generalised the idea by defining the sentence
ordering task as critical for natural language generation applica-
tions and proposed a method for computing the probability of each
possible order. Barzilay and Lapata [2] proposed a method based
on entities. Recently, ordering has gained more attention from the

research community again due to several new methods, which can
be divided into two categories. Pairwise ordering models order
sentences in a pair by pair way [4, 16], while full ordering models
order all sentences directly [5, 8, 17, 31]. Pairwise ordering models
reduce the task to a classification problem where the two labels
are the two possible orders. However, full ordering models, gener-
ally encoder-decoder models with a pointer network [8], proved
their superiority over pairwise ordering models (see, e. g., Wang
and Wan [31]), which is why an encoder-decoder model with a
pointer network is the most frequently used architecture for this
task. Gong et al. [8] proposed a model using an LSTM encoder-
decoder with a pointer network that points to the next sentence
using an attention mechanism. An LSTM encoder-decoder is a
RNN encoder-decoder using the Long Short-Term Memory archi-
tecture introduced by Hochreiter and Schmidhuber [9]. Cui et al.
[5] upgraded the model by adding attention to the encoder part.
Following the same idea, Wang and Wan [31] replaced the LSTM
encoder-decoder with a self-attention encoder-decoder. The result-
ing model uses LSTMs with attention for sentence representations,
a multi-head self-attention encoder-decoder at the sentence level,
and a pointer network using scaled dot-product attention [29]. A
slightly different approach is used by Cui et al. [6]. The authors
develop a new relational pointer decoder by incorporating the rela-
tive ordering information provided by BERT [7] into the pointer
network. The results presented by Cui et al. [6] represent the state
of the art in three major sentence ordering benchmarks [4, 10, 18].

2.4 Ensemble modeling
Ensemble modeling utilises multiple classifiers and combines their
outputs into one tomaximise overall classification precision. Rokach
[26] presents an overview of existing ensemble methods, including
the weighted sum method, which combines the outputs using com-
bination weights. This method is especially suitable for the passage
ordering task because the number of classes is the number of pas-
sages and, therefore, variable. Among others, ensemble modeling
is useful for decision making [19], sentiment analysis [11], hate
speech detection [25] and other tasks.

Sentence ordering models mainly use an encoder-decoder with a
pointer network architecture [5, 8, 17, 31]. This architecture allows
the model to order all the sentences directly and has demonstrated
its efficiency compared to the pairwise approach for the ordering
task [31]. The latest ordering models [6, 7] also take advantage of
the latest Transformer architecture introduced by Vaswani et al.
[29].

3 METHODOLOGY
3.1 Task Definition
Given 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑁 }, a sequence of 𝑁 text segments (passages;
sentences or paragraphs), the passage ordering task consists of
finding the gold order𝑂 = {𝑜1, 𝑜2, ..., 𝑜𝑁 } that maximises discourse
coherence. The resulting coherent text is composed of the passages
{𝑠𝑜1 , 𝑠𝑜2 , ..., 𝑠𝑜𝑁 } in exactly that order, see Figure 1 for an example.
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𝑝1 Jennifer felt bittersweet about it.
𝑝2 She went into class the next day, weary as can be.
𝑝3 Her teacher stated that the test is postponed for next

week.
𝑝4 Jennifer has a big exam tomorrow.
𝑝5 She got so stressed, she pulled an all-nighter.

Gold order 𝑂 = {4, 5, 2, 3, 1}

Figure 1: Example from the ROCStory dataset. The gold or-
der 𝑂 maximises the coherence of the given sentences 𝑝1−5.

The passage ordering model is trained to select the 𝑛𝑡ℎ passage
from 𝑆 regarding the previously ordered passages {𝑠𝑜1 , 𝑠𝑜2 , ..., 𝑠𝑜𝑛−1 }.
It is therefore trained to maximise the probability:

𝑁∑
𝑛=1

logP(𝑠𝑜𝑛 |𝑠𝑜1 , 𝑠𝑜2 , . . . , 𝑠𝑜𝑛−1 ) (1)

3.2 Overview
Our approach adapts the pre-trained encoder-decoder Transformer
BART [15] for the passage ordering task by adding a pointer net-
work on top. Figure 2 shows the overall architecture. BART’s en-
coder creates a representation of each passage (𝑆) to order. Then,
the decoder creates a representation of the already ordered pas-
sages ({𝑠𝑜1 , 𝑠𝑜2 , . . . , 𝑠𝑜𝑛−1 }). Finally, the pointer network attends to
the encoder representations depending on the last decoder repre-
sentation. The attention weights correspond to the probability of
each passage to be the next one.

3.3 BART
BART is a pre-trained sequence-to-sequence model. BART’s en-
coder is a bidirectional Transformer similar to BERT [7] while the
decoder is an auto-regressive Transformer (left to right) as in GPT
[21]. BART is pre-trained on a combination of two tasks: text filling
and sentence permutation. The sentence permutation task is simi-
lar to passage ordering, which is why we chose BART over other
pre-trained encoder-decoder models such as T5 [22]. We use the
BASE version of BART which is composed of six encoder and six
decoder layers, with a hidden size of 768. The last hidden state of
each input token is, therefore, a vector ∈ R768.

3.3.1 Encoder. We concatenate the passages 𝑆 in a continuous text
that we tokenise and use as the input of the encoder. Each passage is
surrounded by special tokens that represent the beginning <s> and
the end of a passage </s>. The end token </s> is used by BART to
represent the sequence in sequence classification tasks. We follow
the same approach and use the last encoder state of the end token
as the encoder passage representation. We also add another end
token at the very end of the text to mark the final passage to order.
The pointer network has to attend to the encoder representation of
this token when all passages are ordered. To summarise, the BART
encoder input (𝑋 ) is the tokenisation of:
<s>s1</s>...<s>sN</s><s></s>

We use the last encoder hidden state of the end tokens as the
representation of the passages, i. e., we do not use the last encoder

hidden of the other tokens to compute the representation of the
passages. Simplifying, the equation for the encoder is:

𝐸 = BARTencoder (𝑋 ) (2)
where 𝐸 ∈ R(𝑁+1)×768, and 𝑒𝑖 is the representation of the 𝑖𝑡ℎ

passage and 𝑒𝑁+1 is the representation of the last passage to order.

3.3.2 Decoder. BART’s decoder takes as input the already ordered
passages processed in a similar way as for the encoder as input (𝑍𝑛),
as well as the encoder output 𝐸. 𝑍𝑛 corresponds to the tokenisation
of:
<s></s><s>so1</s>...<s>son-1</s>

when 𝑛 − 1 passages are already ordered. The first end token
represents the beginning of the ordered passages and should point
to the first passage 𝑠𝑜1 . The following end tokens should point to the
next passages until all passages are ordered. The decoder equation
is:

𝑑𝑛 = BARTdecoder (𝐸, 𝑍𝑛) (3)
where 𝑑𝑛 ∈ R1×768 is the decoder output when the model com-

putes the probability of passages to be the 𝑛𝑡ℎ .

3.4 Pointer network
The pointer network has to compute the probability of passages
to be the 𝑛𝑡ℎ using the encoder output 𝐸 and the decoder output
𝑑𝑛 . The idea is to use an attention mechanism where 𝑑𝑛 attends
to each encoder passage representation 𝐸𝑖 . The resulting attention
weights (𝑃𝑛) are used as the probabilities to be the next passage.
We test three versions of the pointer network.

3.4.1 Version 1: Simple Pointer. This pointer network, used by
Wang andWan [31], computes a scaled dot product attention, where
𝑑𝑛 is the query and encoder passage representations 𝐸𝑖 are the keys:

𝑄 = 𝑑𝑛𝑊𝑄 (4)
𝐾 = 𝐸𝑊𝐾 (5)

𝑃𝑛 = softmax( 𝑄𝐾
𝑇

√
𝑑𝑖𝑚

) (6)

where𝑊𝑄 ∈ R𝑑𝑖𝑚×𝑑𝑖𝑚 and𝑊𝐾 ∈ R𝑑𝑖𝑚×𝑑𝑖𝑚 and 𝑑𝑖𝑚 is the
dimension of BART outputs (768). 𝑃𝑛 ∈ R𝑁+1 is the probability
distribution of the 𝑛𝑡ℎ passage. Precisely, 𝑃𝑛,𝑖 is the probability of
𝑠𝑖 to be the correct passage at the position 𝑛 (𝑠𝑜𝑛 ).

3.4.2 Version 2: Deep Pointer. The learning capacity of the Simple
Pointer is limited to the matrices 𝑊𝑄 and 𝑊𝐾 . To ensure that
this learning capacity was not a limiting factor, we replace these
matrices that correspond to single perceptrons with multi-layer
perceptrons. We introduce 𝑙 as the number of layers used.

3.4.3 Version 3: Ensemble Pointer. Many examples of passage or-
dering have more than one correct ordering, i. e., often there is more
than one correct order, even though only one of these is part of the
gold standard. To address this observation, we create an Ensem-
ble Pointer composed of multiple Simple Pointer networks called
heads. The different heads use the same inputs but have different
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Figure 2: Overview of our model. BART computes encoder and decoder representations of the passages to order and those
already ordered. The pointer network uses these to select the next passage using attention between the decoder outputs and
encoder outputs.

trainable parameters. Therefore, we assume that each head repre-
sents a possible order and that by combining those heads we obtain
an order which best reflects the ground truth. The combination
consists of a weighted sum of the output of each head where the
weights are trainable parameters. This technique takes advantage
of the ensemble modeling where the motivation is to reduce the
generalisation error of the prediction [12]. It corresponds to the
following equation:

𝑄 𝑗 = 𝑑𝑛𝑊
𝑄

𝑗
(7)

𝐾𝑗 = 𝐸𝑊
𝐾
𝑗 (8)

𝑃
𝑗
𝑛 =

𝑄 𝑗𝐾
𝑇
𝑗√

𝑑𝑖𝑚
(9)

𝑃𝑛 =

ℎ∑
𝑗=0

𝑊𝑂
𝑗 𝑃

𝑗
𝑛,𝑖

, for every 𝑖 of 𝑃 𝑗𝑛 . (10)

where ℎ is the number of heads and 𝑗 represents the 𝑗𝑡ℎ head.
Trainable parameters are𝑊𝑄

𝑗
∈ R𝑑𝑖𝑚×𝑑𝑖𝑚

ℎ ,𝑊𝐾
𝑗

∈ R𝑑𝑖𝑚×𝑑𝑖𝑚
ℎ and

𝑊𝑂 ∈ Rℎ .

4 EXPERIMENTS
We train and evaluate the three models presented on three existing
sentence ordering and two new datasets. We compare the results
with the results of seven other methods on the three common
ordering datasets and with the results of our baseline on the two
datasets we created.

4.1 Datasets
We evaluate our models on three datasets for sentence ordering:
arXiv [4], VIST [10], and ROCStory [18]. In addition, we create
two datasets based on Wikipedia and CNN-DailyMail [27]. Table 1
provides an overview.

The arXiv dataset is composed of abstracts of scientific papers.
The VIST dataset was compiled to experiment with visual story-
telling tasks. Each entry consists of five images and five sentences
that create a story; we only use the sentences. The ROCStory dataset
consists of everyday life stories with five sentences each.

We also evaluate two novel datasets. First, we created the Wiki-
pedia dataset to evaluate our model for ordering passages composed
of multiple sentences, i. e., paragraphs. This dataset is based on the
introductions of English Wikipedia articles; the paragraphs in the
introductions are the segments to be ordered. Second, we use the
news articles from CNN-DailyMail following the same methodol-
ogy as with Wikipedia. The CNN-DailMail dataset is composed of
14.5 passages on average (Table 1), which is significantly more than
the other datasets. For these two datasets, we randomly shuffle the
ordered passages to create the passages to order.

We created these two datasets to evaluate passage ordering as
part of the storytelling task since they are more suitable for this
downstream task: the new datasets contain more passages or longer
passages and, therefore, pose greater challenges to the ordering task.
We test how the performance of our ordering models is affected by
the challenges of the new datasets.

In addition to the difference in number of passages and passage
length, the datasets differ with regard to their text genre which can
also affect model performance. The arXiv and Wikipedia datasets
are based on abstracts and introductions, respectively, which are
typically well-structured. This structure reduces the task’s difficulty,
especially when passages contain temporal words. The stories from
ROCStory also follow a well-defined structure compared to those
from VIST and CNN-DailyMail. Indeed, VIST stories were originally
linked to images and so the text alone often does not contain all
needed information. The CNN-DailyMail news articles are less
formalised than abstracts.

4.2 Metrics
We use two metrics to evaluate the models. Perfect Match Ratio
(PMR) calculates the accuracy of exact match between gold order
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Table 1: Comparison of the datasets. All examples from VIST and ROCStory contain five passages (short sentences). Examples
from arXiv are also composed of around five passages on average but they contain twice as many words. CNN-Dailymail has
many more passages to order than the other datasets. Wikipedia contains long passages composed of several sentences.

Number of examples Number of passages Number of words per passage
Dataset train validation test mean 30𝑡ℎ pctl 70𝑡ℎ pctl mean 30𝑡ℎ pctl 70𝑡ℎ pctl

arXiv 884,912 110,614 110,615 5.38 4 6 27.9 20 32
VIST 40,155 4,990 5,055 5.0 5 5 11.4 8 13
ROCStory 78,525 9,816 9,816 5.0 5 5 10.0 8 12
Wikipedia 85,982 10,747 10,748 6.29 5 8 62.22 31 77
CNN-DailyMail 91,238 5,213 4,449 14.5 12 17 31.6 22 37

and predicted order. Kendall’s Tau (𝜏) measures the correlation of
an order with a score from -1 to 1, where 1 is the best score [14].
According to Lapata [14], this metric correlates reliably with human
ratings and reading times. It is calculated as follows:

𝜏 = 1 − 2 ∗ 𝑖
𝑛(𝑛 − 1)/2 (11)

where 𝑛 is the number of passages to order and 𝑖 is the number
of inversions, i. e., the minimum number of adjacent transpositions
needed to obtain the gold order from the prediction.

4.3 Baselines
We compare our models with four other methods on arXiv, VIST,
and ROCStory. We did not reimplement these methods but take
their scores from Wang and Wan [31]. To evaluate our models on
Wikipedia and CNN-DailyMail, we implemented a fifth baseline
called LSTM+Attention.

LSTM+Pairwise Chen et al. [4] implemented a pairwise order-
ing model using LSTMs.

LSTM+Pointer Gong et al. [8] proposed an encoder-decoder
using LSTMs with a pointer network following the original imple-
mentation by Vinyals et al. [30].

LSTM+Set2Seq Logeswaran et al. [17] use a model similar to
LSTM+Pointer with attention in the encoder part of the model.

HierAttention The model presented by Wang and Wan [31]
uses LSTMs with attention for sentence representations, a multi-
head self-attention encoder-decoder at the sentence level and a
pointer network using scaled dot-product attention.

B-TSort The model presented by Prabhumoye et al. [20] uses
BERT to classify the relative order between two sentences and then
a topological sorting algorithm to obtain the final order.

BERSON Cui et al. [6] uses BERT to build a high-level repre-
sentation for each input sentence, a self-attention based paragraph
encoder for encode the all input text, and a relational pointer de-
coder to order input sentences.

LSTM+AttentionWe implement a baseline inspired by Wang
and Wan [31] that uses LSTMs for sentence representations, a
multi-head self-attention encoder-decoder and the Simple Pointer
presented in Section 3.4.1.

4.4 Implementation
We implement and train our models using Huggingface Transform-
ers [32]. We use the BASE version of BART that allows up to 1024

input tokens. We use the Adam Optimizer with fixed weight de-
cay and an initial learning rate of 1−5. We train our models with
a dropout of 0.1 on fully connected layers of BART and without
dropout for the pointer networks. We set the number of neuron
layers of the Deep Pointer 𝑙 to 4 and the number of pointer heads
of the Ensemble Pointer ℎ to 12. We train the models until the eval-
uation loss stops decreasing which was 6 epochs for VIST, 4 for
arXiv, ROCStory and CNN-DailyMail, and 3 epochs for the Wikipe-
dia dataset. For inference, we do not use beam search because its
accuracy improvements do not justify its increased run time.

For the baseline implementation, we use PyTorch and the same
configuration presented in Wang and Wan [31]. We train the base-
line for 10 epochs on each dataset. Our source code and trained
models is publicly available1.

5 RESULTS
5.1 BART for passage ordering
We compare our three models (BART with the three different
pointer networks) with seven other models including our baseline.
The results on arXiv, VIST, and ROCStory are shown in Table 2.

Our models outperform the baselines on arXiv, BERSON and
B-TSort obtain better results on VIST, BERTSON outperforms our
models on ROCStory. BART + Ensemble Pointer is better than the
previous state of the art (BERSON) by 0.0570 Kendall’s Tau and by
0.0678 PMR on arXiv. However, BERSON is better than our best
model by 0.1070 Kendall’s Tau and by 0.1578 PMR on VIST, and by
0.0784 Kendall’s Tau and by 0.1821 PMR on ROCStory.

In addition to the comparison with the best baseline, we investi-
gate the effect of BART as encoder-decoder for passage ordering.
Our experiments show that BART + Simple Pointer is better than
HierAttention which uses the same architecture as BART + Simple
Pointer with the only change being the usage of LSTMs with atten-
tion model as encoder-decoder. Therefore, by simply replacing the
LSTMs with attention encoder-decoder with BART, we observe a
significant improvement.

Regarding the experiments on our two new datasets, we com-
pare our models with the baseline we implemented. Table 3 shows
the results. Our models considerably outperform the baseline we
implemented.
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Table 2: Results of the seven baselines and our three models on the arXiv, VIST and ROCStory datasets. BART + Ensemble
Pointer is the bestmodel on the arXiv dataset while BERSON is better on the two 5 sentences datasets. The best and second-best
results are in bold and underlined respectively.

arXiv VIST ROCStory
Methods 𝜏 PMR 𝜏 PMR 𝜏 PMR

random 0 0.0827 0 0.0083 0 0.0083
LSTM + Pairwise [4] 0.6594 0.3343 – – – –
LSTM + Pointer [8] 0.7158 0.4044 0.4842 0.1234 – –
LSTM + Set2Seq [17] 0.7281 0.4157 0.4919 0.1380 0.7112 0.3581
HierAttention [31] 0.7536 0.4455 0.5021 0.1501 0.7322 0.3962
B-TSort [20] – – 0.6000 0.2032 – –
BERSON [6] 0.8300 0.5606 0.6500 0.3169 0.8800 0.6823
LSTM + Attention 0.6979 0.3793 0.4590 0.1163 0.6893 0.3044
BART + Simple Pointer 0.8834 0.6274 0.4744 0.1422 0.8071 0.4896
BART + Deep Pointer 0.8810 0.6145 0.4838 0.1021 0.8007 0.4785
BART + Ensemble Pointer 0.8870 0.6284 0.5430 0.1591 0.8016 0.5002

Table 3: Results of the baseline we implemented and our
threemodels on theWikipedia and CNN-DailyMail datasets.
Our Simple Pointer and Ensemble Pointermodels obtain the
best results, followed by BART + Deep Pointer and our base-
line.

Wikipedia CNN-DM
Methods 𝜏 PMR 𝜏 PMR

random 0 0.0308 0 0.0008
LSTM + Attention 0.5668 0.2101 0.2960 0.0049
BART + Simple Ptr. 0.6635 0.2969 0.4765 0.0171
BART + Deep Ptr. 0.5679 0.2449 0.4126 0.0067
BART + Ensemble Ptr. 0.6715 0.3010 0.4768 0.0160

5.2 Pointer networks
In addition to using BART, we also compare the different pointer
networks on the five datasets (Table 2 and Table 3). Two major
observations can be made. First, Deep Pointer yields the lowest
scores compared to Simple Pointer and Ensemble Pointer on the
Wikipedia and CNN-DailyMail datasets. However, Deep Pointer
obtains results equivalent to the other two pointer networks on
arXiv and ROCStory and to Simple Pointer on VIST. Second, Simple
Pointer and Ensemble Pointer perform similarly well (difference of
1.6% on average) on all datasets. Only VIST is an exception, where
Ensemble Pointer outperforms Simple Pointer by 0.0686 Kendall’s
Tau (+14%) and by 0.0169 PMR (+12%). To conclude, despite the
fact that the three pointer network versions have similar results,
Ensemble Pointer is performing best on average, followed by Simple
Pointer and Deep Pointer.

To analyse each head of the pointer network, we simulate the
results of each individual head as if it were a Simple Pointer. We
conduct this experiment on all datasets and observe similar results.

Each head alone yields lower scores than Simple Pointer. Moreover,
all heads obtain results different on a majority of samples in the test
set. Indeed, if we manually select the head with the best Kendall’s
Tau for each example, we obtain better results. For instance, doing
this on the CNN-DailyMail dataset gives a Kendall’s Tau of 0.6501
and a PMR of 0.0364 that is an increase of 0.1733 with respect to the
Kendall’s Tau and of 0.0204 with respect to the PMR compared to
Ensemble Pointer. On arXiv, the result is a Kendall’s Tau of 0.9582
and a PMR of 0.7835 that is an increase of 0.0712 with respect to
the Kendall’s Tau and of 0.1551 with respect to the PMR compared
to Ensemble Pointer.

6 DISCUSSION
Themost recent pre-trained Transformers are a recent breakthrough
that have demonstrated their potential [7, 15, 22] by learning some
linguistic concepts before enabling fine-tuning on a specific task.
As passage ordering aims to maximise the linguistic concept of
discourse coherence, the passage ordering models that make use of
the pre-trained Transformers (BERSON, B-TSort, ours) are logically
those obtaining the best results. In the particular case of BART,
the sentence permutation pre-training objective seemed a valuable
contribution to the passage ordering task. The comparison of the
empirical results of HierAttention and our models (Section 5.1)
confirms the positive effect of the pre-training of BART.

BERSON [6] represents a passage according to its relation with
each of the other passages one by one using relative passages order
information, and uses BERT to provide this relative passages order
information. In contrast to that, our models represent a passage
based on the whole context directly using BART’s encoder. We
observe in Section 5.1 that BERSON is performing better than our
BART + Pointer models on the VIST and the ROCStory datasets, de-
spite our models are better on arXiv. VIST and ROCStory both have
5 passages to order compared to 5.38 for arXiv, and the passages are
on average 2.6x shorter in VIST and ROCStory than in arXiv. We
hypothesise that the difference of shape between the datasets can
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Simple Pointer > Ensemble Pointer Ensemble Pointer > Simple Pointer

𝑝1 Aunt Harriot had a little trouble deciding what kind
of wine she wanted tonight.

𝑝1 Bill wonders who has the ball.

𝑝2 The restaurant we chose had amazing food and ev-
eryone loved the presentation.

𝑝2 Tim’s waiting for the baseball to come his way.

𝑝3 Gemma really adored the restaurants decorations and
was always gazing at them.

𝑝3 The family is having a party in the park.

𝑝4 The family sits together for dinner on the first night
of the annual reunion.

𝑝4 Everyone is too tired to pack up and go home.

𝑝5 Bob had the whole family cracking up with his jokes. 𝑝5 Cindy is ready for action.
𝑂 = {4, 2, 3, 1, 5} 𝑂 = {3, 1, 5, 2, 4}
𝑃simple = {4, 2, 1, 3, 5} 𝑃simple = {2, 3, 5, 1, 4}
𝑃ensemble = {4, 3, 1, 5, 2} 𝑃ensemble = {3, 1, 5, 2, 4}

Figure 3: Two examples of the VIST dataset with the gold order (𝑂) and predictions by BART + Simple Pointer (𝑃simple) and
by BART + Ensemble Pointer (𝑃ensemble). We picked one example for which Simple Pointer performs better than Ensemble
Pointer and one where it is the other way around.

explain the difference in the results. Indeed, our models utilize the
whole context to represent the passages and this can be especially
beneficial for capturing complex semantic dependencies that can
be found in longer texts like in arXiv. On the other hand, BERSON,
by ordering the passages between them, works best when ordering
rules are made at passage level, i. e. passages can be ordered in
pairs without taking into account the full meaning of the input. We
assume that this advantage of our models to use the whole input
context, is particularly relevant for the two new datasets we created.
Indeed, the Wikipedia dataset have long passages (62.22 words on
average against 10 for ROCStory) and the CNN-DailyMail dataset
have 14.5 passages to order on average. A comparison of our models
with BERSON on the Wikipedia and the CNN-DailyMail datasets
might help support our hypothesis, unfortunately we could not
obtain a copy of the code associated with Cui et al. [6].

The results presented in Section 5.2 demonstrate that Ensemble
Pointer works in the desired ensemble-like fashion where the heads
are the classifiers and the weighted sum is the way to combine
these classifiers. Indeed, each head (i. e., classifier) is not as good
individually as their combination, which corresponds to the def-
inition of an ensemble method. We also found that if the heads
were perfectly combined (the best head is chosen for each exam-
ple), the performance of the resulting model could be improved
further. Thus, we hypothesize that each head learned a different
way of ordering passages and that the combination of the different
ordering ways corresponds to the average way of ordering that best
matches the correct order. This hypothesis could also explain the
fact that Ensemble Pointer is better on VIST but not on the other
datasets. As presented in Section 4.1, the examples from VIST were
originally associated with images and can be, when isolated from
their images, ambiguous, which makes multiple orders possible.
The Ensemble Pointer, by exploring multiple order possibilities
through its heads, may produce better results than Simple Pointer
on ambiguous datasets such as VIST. To illustrate the ambiguity, we
show two examples from VIST in Figure 3 with predictions of our
BART + Simple/Ensemble Pointer models. On these two specific

examples, multiple orders make sense, which explains that Sim-
ple Pointer and Ensemble Pointer predict different orders. On the
other datasets, the advantage of exploring multiple ordering ways
offered by the ensemble method is compensated by easier training
when there is only one pointer head (e. g., Simple Pointer), which
makes Simple Pointer more efficient than each head from Ensemble
Pointer individually. Finally, Deep Pointer performs worse than the
other two pointer networks in most datasets. This demonstrates
that adding more trainable parameters when creating the key and
query of the pointer network does not automatically increase model
performance. On the contrary, adding parameters makes training
more difficult, which explains the worse results of Deep Pointer.

7 CONCLUSION
In this paper, we present new passage ordering models making use
of the most recent advances in language modeling by using BART
as the encoder-decoder model. On top of BART, we compare three
pointer networks.

We conduct experiments on three existing datasets and on two
new datasets that we created specifically to explore additional or-
dering scenarios. These new datasets, which contain either more
or longer passages to order, have been designed to fit the actual
prototype application in our project use case, i. e., ordering text
segments related to the same topic and taken from different docu-
ment sources, which can vary substantially in number as well as
in length. The results show that BART is performing better than
previous models with an improvement of 0.057 𝜏 compared to the
previous state of the art on the arXiv dataset. However, BERSON
achieves 0.0927 better 𝜏 on average compared to our best model on
the VIST and the ROCStory datasets, which can be explained by
the limited nature of these two datasets, which contain only five
passages to order.

Furthermore, our experiments on the three pointer network
variants show that Ensemble Pointer outperforms the previous
Simple Pointer for some datasets. In addition, our investigation
on Ensemble Pointer shows that, with a better combination of the
heads, the resulting model can largely outperform the models we
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presented in this paper. These results are promising.Wewill explore
them further in terms of future work.

ACKNOWLEDGMENTS
This research is funded by the German Federal Ministry of Edu-
cation and Research (BMBF) through the “Unternehmen Region”,
instrument “Wachstumskern” QURATOR (grant no. 03WKDA1A).
We would like to thank the anonymous reviewers for comments
on an earlier version of this manuscript.

REFERENCES
[1] Regina Barzilay, Noemie Elhadad, and Kathleen R. McKeown. 2001. Sentence

Ordering in Multidocument Summarization. In Proceedings of the First Interna-
tional Conference on Human Language Technology Research (San Diego) (HLT ’01).
Association for Computational Linguistics, USA, 1–7. https://doi.org/10.3115/
1072133.1072217

[2] Regina Barzilay and Mirella Lapata. 2008. Modeling local coherence: An entity-
based approach. Computational Linguistics 34, 1 (2008), 1–34.

[3] Yoshua Bengio and Yann LeCun (Eds.). 2015. 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings. https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:
accepted-main.html

[4] Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. 2016. Neural Sentence Ordering.
arXiv (2016), arXiv–1607.

[5] Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei Zhang. 2018. Deep Attentive
Sentence Ordering Network. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational
Linguistics, Brussels, Belgium, 4340–4349. https://doi.org/10.18653/v1/D18-1465

[6] Baiyun Cui, Yingming Li, and Zhongfei Zhang. 2020. BERT-enhanced Relational
Sentence Ordering Network. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, 6310–6320. https://doi.org/10.18653/v1/2020.emnlp-main.511

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[8] Jingjing Gong, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. 2016. End-to-End
Neural Sentence Ordering Using Pointer Network. arXiv (2016), arXiv–1611.

[9] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[10] Ting-Hao Kenneth Huang, Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra,
Aishwarya Agrawal, Jacob Devlin, Ross Girshick, Xiaodong He, Pushmeet Kohli,
Dhruv Batra, C. Lawrence Zitnick, Devi Parikh, Lucy Vanderwende, Michel Gal-
ley, and Margaret Mitchell. 2016. Visual Storytelling. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Lin-
guistics, San Diego, California, 1233–1239. https://doi.org/10.18653/v1/N16-1147

[11] Monisha Kanakaraj and RamMohana Reddy Guddeti. 2015. NLP based sentiment
analysis on Twitter data using ensemble classifiers. In 2015 3rd International
Conference on Signal Processing, Communication and Networking (ICSCN). IEEE,
Chennai, India, 1–5. https://doi.org/10.1109/ICSCN.2015.7219856

[12] Vijay Kotu and Bala Deshpande. 2015. Chapter 2: Data Mining Process. Predictive
Analytics and Data Mining. Elsevier (2015), 26.

[13] Mirella Lapata. 2003. Probabilistic Text Structuring: Experiments with Sentence
Ordering. In Proceedings of the 41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1 (Sapporo, Japan) (ACL ’03). Association for Compu-
tational Linguistics, USA, 545–552. https://doi.org/10.3115/1075096.1075165

[14] Mirella Lapata. 2006. Automatic Evaluation of Information Ordering: Kendall’s
Tau. Computational Linguistics 32, 4 (2006), 471–484.

[15] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 7871–7880. https://doi.org/10.18653/v1/2020.acl-main.703

[16] Jiwei Li and Dan Jurafsky. 2017. Neural Net Models of Open-domain Discourse
Coherence. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Copenhagen,
Denmark, 198–209. https://doi.org/10.18653/v1/D17-1019

[17] Lajanugen Logeswaran, Honglak Lee, and Dragomir Radev. 2018. Sentence
Ordering and CoherenceModeling using Recurrent Neural Networks. Proceedings

of the AAAI Conference on Artificial Intelligence 32, 1 (Apr. 2018). https://ojs.aaai.
org/index.php/AAAI/article/view/11997

[18] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv
Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. A Corpus
and Cloze Evaluation for Deeper Understanding of Commonsense Stories. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, San Diego, California, 839–849. https://doi.org/10.
18653/v1/N16-1098

[19] Robi Polikar. 2006. Ensemble based systems in decision making. IEEE Circuits
and systems magazine 6, 3 (2006), 21–45.

[20] Shrimai Prabhumoye, Ruslan Salakhutdinov, and Alan W Black. 2020. Topo-
logical Sort for Sentence Ordering. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 2783–2792. https://doi.org/10.18653/v1/2020.acl-main.248

[21] A. Radford. 2018. Improving Language Understanding by Generative Pre-
Training.

[22] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[23] Georg Rehm, Peter Bourgonje, Stefanie Hegele, Florian Kintzel, Julian
Moreno Schneider, Malte Ostendorff, Karolina Zaczynska, Armin Berger, Stefan
Grill, Sören Räuchle, Jens Rauenbusch, Lisa Rutenburg, Andre Schmidt, Mikka
Wild, Henry Hoffmann, Julian Fink, Sarah Schulz, Jurica Seva, Joachim Quantz,
Joachim Böttger, Josefine Matthey, Rolf Fricke, Jan Thomsen, Adrian Paschke,
Jamal Al Qundus, Thomas Hoppe, Naouel Karam, Frauke Weichhardt, Christian
Fillies, Clemens Neudecker, Mike Gerber, Kai Labusch, Vahid Rezanezhad, Robin
Schaefer, David Zellhöfer, Daniel Siewert, Patrick Bunk, Lydia Pintscher, Elena
Aleynikova, and Franziska Heine. 2020. QURATOR: Innovative Technologies
for Content and Data Curation. In Proceedings of QURATOR 2020 – The confer-
ence for intelligent content solutions. Conference on Digital Curation Technologies
(QURATOR-2020), January 20-21, Berlin, Germany, Adrian Paschke, Clemens
Neudecker, Georg Rehm, Jamal Al Qundus, and Lydia Pintscher (Eds.). CEUR
Workshop Proceedings. Volume 2535.

[24] Georg Rehm, Karolina Zaczynska, Julián Moreno-Schneider, Malte Ostendorff,
Peter Bourgonje, Maria Berger, Jens Rauenbusch, André Schmidt, and Mikka
Wild. 2020. Towards Discourse Parsing-inspired Semantic Storytelling. arXiv
e-prints (2020), arXiv–2004.

[25] Julian Risch, A. Stoll, Marc Ziegele, and Ralf Krestel. 2019. hpiDEDIS at Ger-
mEval 2019: Offensive Language Identification using a German BERT model.
In KONVENS. KONVENS, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany.

[26] Lior Rokach. 2010. Ensemble-based classifiers. Artificial intelligence review 33,
1-2 (2010), 1–39.

[27] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point:
Summarization with Pointer-Generator Networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Vancouver, Canada, 1073–
1083. https://doi.org/10.18653/v1/P17-1099

[28] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
LearningwithNeural Networks. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’14).
MIT Press, Cambridge, MA, USA, 3104–3112.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, undefinedukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is All You Need. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 6000–6010.

[30] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks.
In Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (Eds.), Vol. 28. Curran Associates, Inc., Palais
des Congrès de Montréal, Montréal CANADA. https://proceedings.neurips.cc/
paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

[31] Tianming Wang and Xiaojun Wan. 2019. Hierarchical Attention Networks for
Sentence Ordering. Proceedings of the AAAI Conference on Artificial Intelligence
33, 01 (Jul. 2019), 7184–7191. https://doi.org/10.1609/aaai.v33i01.33017184

[32] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2019. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. ArXiv abs/1910.03771 (2019).

https://doi.org/10.3115/1072133.1072217
https://doi.org/10.3115/1072133.1072217
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:accepted-main.html
https://doi.org/10.18653/v1/D18-1465
https://doi.org/10.18653/v1/2020.emnlp-main.511
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N16-1147
https://doi.org/10.1109/ICSCN.2015.7219856
https://doi.org/10.3115/1075096.1075165
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D17-1019
https://ojs.aaai.org/index.php/AAAI/article/view/11997
https://ojs.aaai.org/index.php/AAAI/article/view/11997
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/2020.acl-main.248
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P17-1099
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.1609/aaai.v33i01.33017184

	Abstract
	1 Introduction
	2 Related Work
	2.1 Encoder-decoder models
	2.2 Pointer networks
	2.3 Passage ordering
	2.4 Ensemble modeling

	3 Methodology
	3.1 Task Definition
	3.2 Overview
	3.3 BART
	3.4 Pointer network

	4 Experiments
	4.1 Datasets
	4.2 Metrics
	4.3 Baselines
	4.4 Implementation

	5 Results
	5.1 BART for passage ordering
	5.2 Pointer networks

	6 Discussion
	7 Conclusion
	References

